論文の概要: Low Resource Multi-Task Sequence Tagging -- Revisiting Dynamic
Conditional Random Fields
- arxiv url: http://arxiv.org/abs/2005.00250v1
- Date: Fri, 1 May 2020 07:11:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 23:35:45.156186
- Title: Low Resource Multi-Task Sequence Tagging -- Revisiting Dynamic
Conditional Random Fields
- Title(参考訳): 低リソースマルチタスクシーケンスタグ -動的条件ランダムフィールドの再検討-
- Authors: Jonas Pfeiffer, Edwin Simpson, Iryna Gurevych
- Abstract要約: 異なるタスクに対するラベルシーケンス間の依存関係を利用する低リソースマルチタスクシーケンスタグの異なるモデルを比較した。
タスク予測間の相互依存性の明示的モデリングは、通常のマルチタスクモデルと同様にシングルタスクよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 67.51177964010967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We compare different models for low resource multi-task sequence tagging that
leverage dependencies between label sequences for different tasks. Our analysis
is aimed at datasets where each example has labels for multiple tasks. Current
approaches use either a separate model for each task or standard multi-task
learning to learn shared feature representations. However, these approaches
ignore correlations between label sequences, which can provide important
information in settings with small training datasets. To analyze which
scenarios can profit from modeling dependencies between labels in different
tasks, we revisit dynamic conditional random fields (CRFs) and combine them
with deep neural networks. We compare single-task, multi-task and dynamic CRF
setups for three diverse datasets at both sentence and document levels in
English and German low resource scenarios. We show that including silver labels
from pretrained part-of-speech taggers as auxiliary tasks can improve
performance on downstream tasks. We find that especially in low-resource
scenarios, the explicit modeling of inter-dependencies between task predictions
outperforms single-task as well as standard multi-task models.
- Abstract(参考訳): 異なるタスクに対するラベルシーケンス間の依存関係を利用する低リソースマルチタスクシーケンスタグの異なるモデルを比較した。
分析は、各サンプルが複数のタスクのラベルを持つデータセットを対象としている。
現在のアプローチでは、各タスクに別々のモデルを使うか、あるいは標準的なマルチタスク学習を使って共有機能表現を学ぶ。
しかし、これらのアプローチはラベルシーケンス間の相関を無視し、小さなトレーニングデータセットを持つ設定で重要な情報を提供できる。
異なるタスクにおけるラベル間の依存関係のモデリングから得られるシナリオを分析するために、動的条件付きランダムフィールド(CRF)を再検討し、それらをディープニューラルネットワークと組み合わせる。
我々は、英語とドイツ語の低リソースシナリオにおいて、文レベルと文書レベルで3つの多様なデータセットに対して、シングルタスク、マルチタスク、動的crfの設定を比較する。
本稿では,事前訓練された音声タグの銀ラベルを補助タスクとして含めることで,下流タスクの性能向上が期待できることを示す。
特に低リソースシナリオでは,タスク予測間の依存性の明示的モデリングが単一タスクや標準マルチタスクモデルよりも優れていることが判明した。
関連論文リスト
- An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - Relational Multi-Task Learning: Modeling Relations between Data and
Tasks [84.41620970886483]
マルチタスク学習における主要な前提は、推論時にモデルが与えられたデータポイントにのみアクセスできるが、他のタスクからのデータポイントのラベルにはアクセスできないことである。
ここでは、補助的なタスクからデータポイントラベルを活用してより正確な予測を行う、新しいリレーショナルマルチタスク学習環境を提案する。
私たちはMetaLinkを開発し、そこではデータポイントとタスクを接続するナレッジグラフを構築します。
論文 参考訳(メタデータ) (2023-03-14T07:15:41Z) - Multi-task Active Learning for Pre-trained Transformer-based Models [22.228551277598804]
複数のタスクをひとつのモデルで共同で学習するマルチタスク学習により、NLPモデルは複数のアノテーションから情報を共有することができる。
このテクニックでは、コストがかかり、面倒な複数のアノテーションスキームで同じテキストに注釈を付ける必要がある。
アクティブラーニング(AL)は、ラベルなし例を反復的に選択することで、アノテーションプロセスの最適化を実証している。
論文 参考訳(メタデータ) (2022-08-10T14:54:13Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
最近の最先端のニューラルテキストマッチングモデル(PLM)は、様々なタスクに一般化することが難しい。
我々は、特殊化一般化訓練戦略を採用し、それをMatch-Promptと呼ぶ。
特殊化段階では、異なるマッチングタスクの記述はいくつかのプロンプトトークンにマッピングされる。
一般化段階において、テキストマッチングモデルは、多種多様なマッチングタスクを訓練することにより、本質的なマッチング信号を探索する。
論文 参考訳(メタデータ) (2022-04-06T11:01:08Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
マルチタスク学習(MTL)におけるハードパラメータ共有により、タスクはモデルのパラメータの一部を共有でき、ストレージコストを低減し、予測精度を向上させることができる。
共通の共有プラクティスは、タスク毎に別々のトップレイヤを使用しながら、タスク間でディープニューラルネットワークのボトムレイヤを共有することだ。
異なるボトム層パラメータを使用することで、一般的なプラクティスよりも大幅にパフォーマンスが向上する可能性がある。
論文 参考訳(メタデータ) (2021-07-23T17:26:40Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
我々は,共通バックボーンと独立タスク固有のヘッドで表される,密集予測タスクのためのマルチタスク環境を考える。
マルチタスク設定では,グローバルやローカルなど,さまざまな注意に基づくコンテキストを探索する。
タスクペアごとに利用可能なすべてのコンテキストのプールをサンプリングするAdaptive Task-Relational Contextモジュールを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:45:56Z) - Modelling Latent Skills for Multitask Language Generation [15.126163032403811]
マルチタスク条件言語生成のための生成モデルを提案する。
我々の指導的仮説は、共通の潜在スキルの集合が、多くの異なる言語生成タスクの根底にあるというものである。
このタスク埋め込み空間を潜在変数列列列モデルにおける潜在変数としてインスタンス化する。
論文 参考訳(メタデータ) (2020-02-21T20:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。