論文の概要: Multi-task Active Learning for Pre-trained Transformer-based Models
- arxiv url: http://arxiv.org/abs/2208.05379v1
- Date: Wed, 10 Aug 2022 14:54:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-11 12:36:46.066854
- Title: Multi-task Active Learning for Pre-trained Transformer-based Models
- Title(参考訳): 事前学習型トランスモデルのマルチタスク能動学習
- Authors: Guy Rotman and Roi Reichart
- Abstract要約: 複数のタスクをひとつのモデルで共同で学習するマルチタスク学習により、NLPモデルは複数のアノテーションから情報を共有することができる。
このテクニックでは、コストがかかり、面倒な複数のアノテーションスキームで同じテキストに注釈を付ける必要がある。
アクティブラーニング(AL)は、ラベルなし例を反復的に選択することで、アノテーションプロセスの最適化を実証している。
- 参考スコア(独自算出の注目度): 22.228551277598804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-task learning, in which several tasks are jointly learned by a single
model, allows NLP models to share information from multiple annotations and may
facilitate better predictions when the tasks are inter-related. This technique,
however, requires annotating the same text with multiple annotation schemes
which may be costly and laborious. Active learning (AL) has been demonstrated
to optimize annotation processes by iteratively selecting unlabeled examples
whose annotation is most valuable for the NLP model. Yet, multi-task active
learning (MT-AL) has not been applied to state-of-the-art pre-trained
Transformer-based NLP models. This paper aims to close this gap. We explore
various multi-task selection criteria in three realistic multi-task scenarios,
reflecting different relations between the participating tasks, and demonstrate
the effectiveness of multi-task compared to single-task selection. Our results
suggest that MT-AL can be effectively used in order to minimize annotation
efforts for multi-task NLP models.
- Abstract(参考訳): 複数のタスクがひとつのモデルで共同で学習されるマルチタスク学習では、NLPモデルは複数のアノテーションから情報を共有することができ、タスクが相互に関連している場合の予測がより容易になる。
しかし、このテクニックでは、コストと労力のかかる複数のアノテーションスキームで同じテキストに注釈を付ける必要がある。
アクティブラーニング(AL)は、NLPモデルに最も価値があるラベルなし例を反復的に選択することで、アノテーションプロセスの最適化を実証している。
しかし、マルチタスクアクティブラーニング(MT-AL)は、最先端の訓練済みトランスフォーマーベースのNLPモデルには適用されていない。
本稿は,このギャップを埋めることを目的とする。
我々は,3つの現実的なマルチタスクシナリオにおける様々なマルチタスク選択条件を検討し,参加タスク間の関係を反映し,シングルタスク選択と比較してマルチタスクの有効性を示す。
MT-ALはマルチタスクNLPモデルのアノテーション処理を最小化するために有効であることを示す。
関連論文リスト
- Making Small Language Models Better Multi-task Learners with
Mixture-of-Task-Adapters [13.6682552098234]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクにおいて、驚くべきゼロショット学習性能を達成した。
マルチタスク学習者に対して,小型言語モデルに基づくmixTure-of-task-adapterを効果的に構築するシステムであるALTERを提案する。
少ない計算コストでアダプタ間の協調を最適化する2段階の学習手法を提案する。
論文 参考訳(メタデータ) (2023-09-20T03:39:56Z) - Task Selection and Assignment for Multi-modal Multi-task Dialogue Act
Classification with Non-stationary Multi-armed Bandits [11.682678945754837]
マルチタスク学習(MTL)は、関連する補助タスクと共同学習することで、一次タスクの性能を向上させることを目的としている。
これまでの研究では、このようなランダムなタスクの選択は役に立たない可能性があり、パフォーマンスに有害な可能性があることが示唆されている。
本稿では,非定常的マルチアームバンディットに基づくタスクの選択と割り当てを行う手法を提案する。
論文 参考訳(メタデータ) (2023-09-18T14:51:51Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
マルチタスク学習は、複数の関連するソースタスクで強化することで、低リソースのターゲットタスクのトレーニングに広く使用されている。
マルチタスク学習における重要な問題は、ターゲットタスクに利益をもたらすソースタスクのサブセットを特定することである。
本稿では,サロゲートモデルを用いてこの問題に対処する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:16:11Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
ジェネリストモデルは、単一のモデル内でタスクに依存しない方法で多様なマルチモーダルタスクを実行することができる。
マルチモーダル命令と呼ばれる宣言型タスクインタフェース上に構築された汎用モデル学習システムOFASysをリリースする。
論文 参考訳(メタデータ) (2022-12-08T17:07:09Z) - A Survey of Multi-task Learning in Natural Language Processing:
Regarding Task Relatedness and Training Methods [17.094426577723507]
自然言語処理(NLP)において,マルチタスク学習(MTL)がますます普及している。
共通点と相違点を活用することで、関連するタスクのパフォーマンスを向上させる。
トレーニングタスクの関連性に基づいてマルチタスク学習をどのように実装できるかは、まだよく理解されていない。
論文 参考訳(メタデータ) (2022-04-07T15:22:19Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
少ないショット学習は、少数の例から見れば、新しいタスクに対処できる表現を学習することを目的としている。
近年の研究では,タスク分布がモデルの性能に重要な役割を担っていることが示されている。
タスクの多様性がメタ学習アルゴリズムに与える影響を評価するために,多種多様なモデルとデータセットのタスク分布について検討する。
論文 参考訳(メタデータ) (2022-01-27T19:39:07Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Low Resource Multi-Task Sequence Tagging -- Revisiting Dynamic
Conditional Random Fields [67.51177964010967]
異なるタスクに対するラベルシーケンス間の依存関係を利用する低リソースマルチタスクシーケンスタグの異なるモデルを比較した。
タスク予測間の相互依存性の明示的モデリングは、通常のマルチタスクモデルと同様にシングルタスクよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-01T07:11:34Z) - TempLe: Learning Template of Transitions for Sample Efficient Multi-task
RL [18.242904106537654]
TempLeはマルチタスク強化学習のための最初のPAC-MDP法である。
オンライン" と "有限モデル" の2つのアルゴリズムをそれぞれ提示する。
提案したTempLeアルゴリズムは,シングルタスク学習者や最先端のマルチタスク手法よりもはるかに低いサンプリング複雑性を実現する。
論文 参考訳(メタデータ) (2020-02-16T19:46:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。