論文の概要: A Controllable Model of Grounded Response Generation
- arxiv url: http://arxiv.org/abs/2005.00613v2
- Date: Mon, 14 Jun 2021 06:23:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 23:55:10.520792
- Title: A Controllable Model of Grounded Response Generation
- Title(参考訳): 接地応答生成の制御可能なモデル
- Authors: Zeqiu Wu, Michel Galley, Chris Brockett, Yizhe Zhang, Xiang Gao, Chris
Quirk, Rik Koncel-Kedziorski, Jianfeng Gao, Hannaneh Hajishirzi, Mari
Ostendorf and Bill Dolan
- Abstract要約: 現在のエンドツーエンドのニューラルネットワークモデルは、応答生成プロセスにセマンティックコントロールを課す柔軟性を本質的に欠いている。
我々は制御可能な接地応答生成(CGRG)と呼ばれるフレームワークを提案する。
このフレームワークを用いることで、会話のようなRedditデータセットでトレーニングされた、新しいインダクティブアテンション機構を備えたトランスフォーマーベースのモデルが、強力な生成ベースラインを上回っていることを示す。
- 参考スコア(独自算出の注目度): 122.7121624884747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current end-to-end neural conversation models inherently lack the flexibility
to impose semantic control in the response generation process, often resulting
in uninteresting responses. Attempts to boost informativeness alone come at the
expense of factual accuracy, as attested by pretrained language models'
propensity to "hallucinate" facts. While this may be mitigated by access to
background knowledge, there is scant guarantee of relevance and informativeness
in generated responses. We propose a framework that we call controllable
grounded response generation (CGRG), in which lexical control phrases are
either provided by a user or automatically extracted by a control phrase
predictor from dialogue context and grounding knowledge. Quantitative and
qualitative results show that, using this framework, a transformer based model
with a novel inductive attention mechanism, trained on a conversation-like
Reddit dataset, outperforms strong generation baselines.
- Abstract(参考訳): 現在のエンドツーエンドのニューラル会話モデルは、本質的に応答生成プロセスに意味的制御を課す柔軟性を欠いている。
インフォメーション性を高める試みは、事前訓練された言語モデルの事実を「幻覚」する傾向によって証明されるように、事実の正確さを犠牲にしている。
これは背景知識へのアクセスによって緩和されるかもしれないが、生成した応答における関連性と情報性の保証は少ない。
本稿では,対話の文脈や知識から語彙的制御句が提供されたり,あるいは制御句予測器によって自動的に抽出されたりする,制御可能な接地応答生成(cgrg)と呼ばれる枠組みを提案する。
このフレームワークを用いて、会話のようなRedditデータセットに基づいてトレーニングされた、新しい誘導的注意機構を備えたトランスフォーマーベースのモデルが、強力な生成ベースラインを上回っていることを示す。
関連論文リスト
- Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Promoting Open-domain Dialogue Generation through Learning Pattern
Information between Contexts and Responses [5.936682548344234]
本稿では,学習サンプルの文脈と応答の間の暗黙的なパターン情報を学ぶことにより,生成した応答の品質を向上させる。
また、文脈と応答間の暗黙的パターン情報をマイニングする応答認識機構を設計し、生成した応答をより多様でヒトの応答に近似するようにした。
論文 参考訳(メタデータ) (2023-09-06T08:11:39Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Context Matters in Semantically Controlled Language Generation for
Task-oriented Dialogue Systems [6.1478669848771546]
本研究は,タスク指向対話における文脈言語生成を実現するために,事前学習モデルによって符号化された対話履歴情報と,現在のシステム発話の意味表現とを組み合わせる。
我々は、事前学習されたマルチコンテキスト・コンベRTモデルを、スクラッチから訓練されたモデルにおける文脈表現に利用し、事前学習されたGPT-2から適応したモデルにおいて、直前のユーザ発話を文脈生成に活用する。
論文 参考訳(メタデータ) (2021-11-28T11:48:02Z) - Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable
Features [16.676172815172166]
本稿では,これらの証拠に忠実に保たれるように制御されたシステムに対して,生成的ニューラルダイアログモデルを訓練する上での課題について論じる。
既存のデータセットには、選択されたエビデンスに忠実な会話応答と、より主観的あるいはチトチャットスタイルの応答が混在している。
そこで本稿では,情報量と客観性を定量化することにより,これらの応答の異なるスタイルを解消するための異なる評価手法を提案する。
論文 参考訳(メタデータ) (2021-07-14T19:52:12Z) - Neural Path Hunter: Reducing Hallucination in Dialogue Systems via Path
Grounding [15.62141731259161]
知識グラフ(KG)による既知の事実に対するニューラルダイアログシステムの忠実度向上の課題に焦点をあてる。
KG の k-hop サブグラフを用いて生成した応答を修正する生成・再定義戦略に従ったニューラルパスハンターを提案する。
提案モデルは,モデルを再トレーニングすることなく,任意の対話生成応答に容易に適用できる。
論文 参考訳(メタデータ) (2021-04-17T05:23:44Z) - Knowledge-Grounded Dialogue Generation with Pre-trained Language Models [74.09352261943911]
我々は、事前学習された言語モデルを用いた知識基底対話生成について研究する。
本稿では,知識選択モジュールを用いた事前学習言語モデルによって定義された等価応答生成を提案する。
論文 参考訳(メタデータ) (2020-10-17T16:49:43Z) - Controlling Dialogue Generation with Semantic Exemplars [55.460082747572734]
本稿では,経験的応答に現れる意味的フレームを用いて生成をガイドする,経験的対話生成モデルEDGEを提案する。
単語自体の単語ではなく、経験者の意味的フレームに基づく対話生成の制御により、生成した応答の一貫性が向上することを示す。
論文 参考訳(メタデータ) (2020-08-20T17:02:37Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
検索システムからの情報を学習済みの言語モデルと純粋に教師なしの方法で統合する。
この方法で事前学習された言語モデルを拡張することで、性能が劇的に向上し、教師なしにもかかわらず、結果として得られるシステムは、教師なしの機械読解ベースラインと競合する、と報告する。
論文 参考訳(メタデータ) (2020-05-10T09:28:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。