論文の概要: Robust Deep Learning as Optimal Control: Insights and Convergence
Guarantees
- arxiv url: http://arxiv.org/abs/2005.00616v1
- Date: Fri, 1 May 2020 21:26:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 23:29:31.683612
- Title: Robust Deep Learning as Optimal Control: Insights and Convergence
Guarantees
- Title(参考訳): 最適制御としての頑健なディープラーニング:洞察と収束保証
- Authors: Jacob H. Seidman, Mahyar Fazlyab, Victor M. Preciado, George J. Pappas
- Abstract要約: 訓練中の敵の例は、敵の攻撃に対する一般的な防御メカニズムです。
min-max問題を最適制御問題として解釈することにより、ニューラルネットワークの構成構造を活用できることが示されている。
本稿では、ロバストな最適制御の手法と、最適化における不正確な手法を組み合わせて、この逆学習アルゴリズムの最初の収束解析を行う。
- 参考スコア(独自算出の注目度): 19.28405674700399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fragility of deep neural networks to adversarially-chosen inputs has
motivated the need to revisit deep learning algorithms. Including adversarial
examples during training is a popular defense mechanism against adversarial
attacks. This mechanism can be formulated as a min-max optimization problem,
where the adversary seeks to maximize the loss function using an iterative
first-order algorithm while the learner attempts to minimize it. However,
finding adversarial examples in this way causes excessive computational
overhead during training. By interpreting the min-max problem as an optimal
control problem, it has recently been shown that one can exploit the
compositional structure of neural networks in the optimization problem to
improve the training time significantly. In this paper, we provide the first
convergence analysis of this adversarial training algorithm by combining
techniques from robust optimal control and inexact oracle methods in
optimization. Our analysis sheds light on how the hyperparameters of the
algorithm affect the its stability and convergence. We support our insights
with experiments on a robust classification problem.
- Abstract(参考訳): 逆方向の入力に対するディープニューラルネットワークの脆弱さは、ディープラーニングアルゴリズムを再検討する必要性を動機付けている。
訓練中の敵の例を含むことは、敵の攻撃に対する一般的な防御メカニズムである。
このメカニズムは、学習者が最小化を試みながら反復的な一階法アルゴリズムを用いて損失関数を最大化しようとするmin-max最適化問題として定式化することができる。
しかし、このような逆例を見つけることは、訓練中に過剰な計算オーバーヘッドを引き起こす。
近年, min-max問題を最適制御問題として解釈することにより, 最適化問題におけるニューラルネットワークの構成構造を利用して, トレーニング時間を大幅に改善できることが示されている。
本稿では、ロバストな最適制御法と不正確なオラクル法を併用して、この逆学習アルゴリズムの最初の収束解析を行う。
解析の結果、アルゴリズムのハイパーパラメータが安定性と収束にどのように影響するかが明らかになった。
我々は、ロバストな分類問題に関する実験で洞察を支持する。
関連論文リスト
- Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
ニューラル推論の最近の進歩を活用して,CO問題の学習を改善することを提案する。
私たちは、COインスタンスでトレーニングする前に、関連するアルゴリズムでニューラルネットワークを事前トレーニングすることを提案します。
以上の結果から,この学習装置を用いることで,非アルゴリズム的情報深層学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-05-18T13:59:02Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
本稿では,これらのミニマックス問題の解法として,適応最小最適化アルゴリズム(AdaFGDA)を提案する。
運動量に基づく還元および局所SGD技術を構築し、様々な適応学習率を柔軟に組み込む。
論文 参考訳(メタデータ) (2022-11-14T12:32:18Z) - Federated Learning with a Sampling Algorithm under Isoperimetry [9.990687944474738]
フェデレーション学習は、機械学習アルゴリズムのトレーニングを複数のデバイスに効率的に分散するために、一連のテクニックを使用する。
本稿では,Langevinvin のサンプル Aafteri の通信効率のよい変種を提案する。
論文 参考訳(メタデータ) (2022-06-02T08:19:03Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - On the Convergence and Robustness of Adversarial Training [134.25999006326916]
Project Gradient Decent (PGD) によるアドリアリトレーニングが最も効果的である。
生成した逆数例の収束性を向上させるためのテクトダイナミックトレーニング戦略を提案する。
その結果,提案手法の有効性が示唆された。
論文 参考訳(メタデータ) (2021-12-15T17:54:08Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
我々は、一般的に使用される最適化アルゴリズムの幅広いクラスについて考察する。
その結果、ニューラルネットワークの収束挙動を利用することができる。
このアプローチは他の最適化アルゴリズムやネットワーク理論にも拡張できると考えています。
論文 参考訳(メタデータ) (2020-10-25T17:10:22Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
本稿では、予測精度とネットワーク複雑性を2つの個別目的関数として扱うことにより、ニューラルネットワークのトレーニングに関する多目的視点を提案する。
模範的畳み込みニューラルネットワークの予備的な数値結果から、ニューラルネットワークの複雑性の大幅な低減と精度の低下が可能であることが確認された。
論文 参考訳(メタデータ) (2020-08-31T13:28:03Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
本稿では,機械学習アルゴリズムの安全性を保証するために,強靭に訓練されたアルゴリズムを実装するための戦略について検討する。
我々は、敵の攻撃と防衛を分類し、ロバスト最適化問題をmin-max設定で定式化し、それを3つのサブカテゴリに分類する。
論文 参考訳(メタデータ) (2020-07-01T21:00:32Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。