Using Noisy Self-Reports to Predict Twitter User Demographics
- URL: http://arxiv.org/abs/2005.00635v2
- Date: Sun, 11 Jul 2021 08:02:36 GMT
- Title: Using Noisy Self-Reports to Predict Twitter User Demographics
- Authors: Zach Wood-Doughty, Paiheng Xu, Xiao Liu, Mark Dredze
- Abstract summary: We present a method to identify self-reports of race and ethnicity from Twitter profile descriptions.
Despite errors inherent in automated supervision, we produce models with good performance when measured on gold standard self-report survey data.
- Score: 17.288865276460527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational social science studies often contextualize content analysis
within standard demographics. Since demographics are unavailable on many social
media platforms (e.g. Twitter) numerous studies have inferred demographics
automatically. Despite many studies presenting proof of concept inference of
race and ethnicity, training of practical systems remains elusive since there
are few annotated datasets. Existing datasets are small, inaccurate, or fail to
cover the four most common racial and ethnic groups in the United States. We
present a method to identify self-reports of race and ethnicity from Twitter
profile descriptions. Despite errors inherent in automated supervision, we
produce models with good performance when measured on gold standard self-report
survey data. The result is a reproducible method for creating large-scale
training resources for race and ethnicity.
Related papers
- Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFair is a novel approach to address social bias in language models.
We leverage prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias.
arXiv Detail & Related papers (2024-03-14T15:58:36Z) - Aligning with Whom? Large Language Models Have Gender and Racial Biases
in Subjective NLP Tasks [15.015148115215315]
We conduct experiments on four popular large language models (LLMs) to investigate their capability to understand group differences and potential biases in their predictions for politeness and offensiveness.
We find that for both tasks, model predictions are closer to the labels from White and female participants.
More specifically, when being prompted to respond from the perspective of "Black" and "Asian" individuals, models show lower performance in predicting both overall scores as well as the scores from corresponding groups.
arXiv Detail & Related papers (2023-11-16T10:02:24Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
We present a Chinese Bias Benchmark dataset that consists of over 100K questions jointly constructed by human experts and generative language models.
The testing instances in the dataset are automatically derived from 3K+ high-quality templates manually authored with stringent quality control.
Extensive experiments demonstrate the effectiveness of the dataset in detecting model bias, with all 10 publicly available Chinese large language models exhibiting strong bias in certain categories.
arXiv Detail & Related papers (2023-06-28T14:14:44Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
This work uses the flaw of bias in language models to explore the biases of six different online communities.
The bias of the resulting models is evaluated by prompting the models with different demographics and comparing the sentiment and toxicity values of these generations.
This work not only affirms how easily bias is absorbed from training data but also presents a scalable method to identify and compare the bias of different datasets or communities.
arXiv Detail & Related papers (2023-06-04T08:09:26Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
We develop a self-learning model to explore the constrastive learning in the domain of misinformation identification.
Our model shows the superior performance of non-matched image-text pair detection when the training data is insufficient.
arXiv Detail & Related papers (2023-04-19T02:53:59Z) - Metrics for Dataset Demographic Bias: A Case Study on Facial Expression Recognition [4.336779198334903]
One of the most prominent types of demographic bias are statistical imbalances in the representation of demographic groups in the datasets.
We develop a taxonomy for the classification of these metrics, providing a practical guide for the selection of appropriate metrics.
The paper provides valuable insights for researchers in AI and related fields to mitigate dataset bias and improve the fairness and accuracy of AI models.
arXiv Detail & Related papers (2023-03-28T11:04:18Z) - BLIND: Bias Removal With No Demographics [29.16221451643288]
We introduce BLIND, a method for bias removal with no prior knowledge of the demographics in the dataset.
While training a model on a downstream task, BLIND detects biased samples using an auxiliary model that predicts the main model's success, and down-weights those samples during the training process.
Experiments with racial and gender biases in sentiment classification and occupation classification tasks demonstrate that BLIND mitigates social biases without relying on a costly demographic annotation process.
arXiv Detail & Related papers (2022-12-20T18:59:42Z) - Detecting Unintended Social Bias in Toxic Language Datasets [32.724030288421474]
This paper introduces a new dataset ToxicBias curated from the existing dataset of Kaggle competition named "Jigsaw Unintended Bias in Toxicity Classification"
The dataset contains instances annotated for five different bias categories, viz., gender, race/ethnicity, religion, political, and LGBTQ.
We train transformer-based models using our curated datasets and report baseline performance for bias identification, target generation, and bias implications.
arXiv Detail & Related papers (2022-10-21T06:50:12Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - One Label, One Billion Faces: Usage and Consistency of Racial Categories
in Computer Vision [75.82110684355979]
We study the racial system encoded by computer vision datasets supplying categorical race labels for face images.
We find that each dataset encodes a substantially unique racial system, despite nominally equivalent racial categories.
We find evidence that racial categories encode stereotypes, and exclude ethnic groups from categories on the basis of nonconformity to stereotypes.
arXiv Detail & Related papers (2021-02-03T22:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.