BLIND: Bias Removal With No Demographics
- URL: http://arxiv.org/abs/2212.10563v2
- Date: Mon, 12 Jun 2023 03:55:12 GMT
- Title: BLIND: Bias Removal With No Demographics
- Authors: Hadas Orgad, Yonatan Belinkov
- Abstract summary: We introduce BLIND, a method for bias removal with no prior knowledge of the demographics in the dataset.
While training a model on a downstream task, BLIND detects biased samples using an auxiliary model that predicts the main model's success, and down-weights those samples during the training process.
Experiments with racial and gender biases in sentiment classification and occupation classification tasks demonstrate that BLIND mitigates social biases without relying on a costly demographic annotation process.
- Score: 29.16221451643288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models trained on real-world data tend to imitate and amplify social biases.
Common methods to mitigate biases require prior information on the types of
biases that should be mitigated (e.g., gender or racial bias) and the social
groups associated with each data sample. In this work, we introduce BLIND, a
method for bias removal with no prior knowledge of the demographics in the
dataset. While training a model on a downstream task, BLIND detects biased
samples using an auxiliary model that predicts the main model's success, and
down-weights those samples during the training process. Experiments with racial
and gender biases in sentiment classification and occupation classification
tasks demonstrate that BLIND mitigates social biases without relying on a
costly demographic annotation process. Our method is competitive with other
methods that require demographic information and sometimes even surpasses them.
Related papers
- MABR: A Multilayer Adversarial Bias Removal Approach Without Prior Bias Knowledge [6.208151505901749]
Models trained on real-world data often mirror and exacerbate existing social biases.
We introduce a novel adversarial training strategy that operates independently of prior bias-type knowledge.
Our method effectively reduces social biases without the need for demographic annotations.
arXiv Detail & Related papers (2024-08-10T09:11:01Z) - Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFair is a novel approach to address social bias in language models.
We leverage prototypical demographic texts and incorporate a regularization term during the fine-tuning process to mitigate bias.
arXiv Detail & Related papers (2024-03-14T15:58:36Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Echoes: Unsupervised Debiasing via Pseudo-bias Labeling in an Echo
Chamber [17.034228910493056]
This paper presents experimental analyses revealing that the existing biased models overfit to bias-conflicting samples in the training data.
We propose a straightforward and effective method called Echoes, which trains a biased model and a target model with a different strategy.
Our approach achieves superior debiasing results compared to the existing baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-06T13:13:18Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.