Anisotropic Spin-Acoustic Resonance in Silicon Carbide at Room
Temperature
- URL: http://arxiv.org/abs/2005.00787v1
- Date: Sat, 2 May 2020 10:51:50 GMT
- Title: Anisotropic Spin-Acoustic Resonance in Silicon Carbide at Room
Temperature
- Authors: A. Hern\'andez-M\'inguez, A. V. Poshakinskiy, M. Hollenbach, P. V.
Santos and G. V. Astakhov
- Abstract summary: We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature.
Results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on acoustically driven spin resonances in atomic-scale centers in
silicon carbide at room temperature. Specifically, we use a surface acoustic
wave cavity to selectively address spin transitions with magnetic quantum
number differences of $\pm$1 and $\pm$2 in the absence of external microwave
electromagnetic fields. These spin-acoustic resonances reveal a non-trivial
dependence on the static magnetic field orientation, which is attributed to the
intrinsic symmetry of the acoustic fields combined with the peculiar properties
of a half-integer spin system. We develop a microscopic model of the
spin-acoustic interaction, which describes our experimental data without
fitting parameters. Furthermore, we predict that traveling surface waves lead
to a chiral spin-acoustic resonance, which changes upon magnetic field
inversion. These results establish silicon carbide as a highly-promising hybrid
platform for on-chip spin-optomechanical quantum control enabling engineered
interactions at room temperature.
Related papers
- Study on the effects of anisotropic effective mass on electronic
properties, magnetization and persistent current in semiconductor quantum
ring with conical geometry [2.3353925077667923]
We study a 2D mesoscopic ring with an anisotropic effective mass considering surface quantum confinement effects.
We demonstrate through numerical analysis that the electronic properties, the magnetization, and the persistent current undergo significant changes due to quantum confinement and non-isotropic mass.
arXiv Detail & Related papers (2023-11-16T12:40:08Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Optically driven spin precession in polariton condensates [0.0]
We introduce an all-optically driven spin precession in microcavity polariton condensates.
We realise several GHz driven spin precession with a macroscopic spin coherence time that is limited only by the extraneous to the condensate.
Our observations are supported by mean field modelling and evidence a driven-dissipative quantum fluidic analogue of the nuclear magnetic resonance effect.
arXiv Detail & Related papers (2023-05-05T18:30:24Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Spin-Acoustic Control of Silicon Vacancies in 4H Silicon Carbide [0.0]
We demonstrate direct, acoustically mediated spin control of naturally occurring negatively charged silicon monovacancies (V$_Si-$) in a high quality factor Lateral Overtone Bulk Acoustic Resonator.
We show that acoustic driving can be used at room temperature to induce coherent population oscillations.
Our work can be applied to the characterization of high quality-factor micro-electro-mechanical systems and has the potential to be extended to a mechanically addressable quantum memory.
arXiv Detail & Related papers (2022-05-31T00:56:56Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin noise spectroscopy of a noise-squeezed atomic state [0.0]
We study spin fluctuations of room-temperature neutral atoms in a Bell-Bloom type magnetometer.
Results reveal a strong asymmetry in the noise distribution of the atomic signal quadratures at the magnetic resonance.
arXiv Detail & Related papers (2020-12-23T11:59:39Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.