論文の概要: DroTrack: High-speed Drone-based Object Tracking Under Uncertainty
- arxiv url: http://arxiv.org/abs/2005.00828v1
- Date: Sat, 2 May 2020 13:16:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 12:15:59.593153
- Title: DroTrack: High-speed Drone-based Object Tracking Under Uncertainty
- Title(参考訳): DroTrack:不確実性下での高速ドローンによる物体追跡
- Authors: Ali Hamdi, Flora Salim, Du Yong Kim
- Abstract要約: DroTrackは、ドローンがキャプチャしたビデオシーケンスのための高速なビジュアル単一オブジェクト追跡フレームワークである。
ファジィC平均に基づく効果的なオブジェクトセグメンテーションを実装した。
また、幾何角運動を利用して信頼度の高い物体スケールを推定する。
- 参考スコア(独自算出の注目度): 0.23204178451683263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DroTrack, a high-speed visual single-object tracking framework for
drone-captured video sequences. Most of the existing object tracking methods
are designed to tackle well-known challenges, such as occlusion and cluttered
backgrounds. The complex motion of drones, i.e., multiple degrees of freedom in
three-dimensional space, causes high uncertainty. The uncertainty problem leads
to inaccurate location predictions and fuzziness in scale estimations. DroTrack
solves such issues by discovering the dependency between object representation
and motion geometry. We implement an effective object segmentation based on
Fuzzy C Means (FCM). We incorporate the spatial information into the membership
function to cluster the most discriminative segments. We then enhance the
object segmentation by using a pre-trained Convolution Neural Network (CNN)
model. DroTrack also leverages the geometrical angular motion to estimate a
reliable object scale. We discuss the experimental results and performance
evaluation using two datasets of 51,462 drone-captured frames. The combination
of the FCM segmentation and the angular scaling increased DroTrack precision by
up to $9\%$ and decreased the centre location error by $162$ pixels on average.
DroTrack outperforms all the high-speed trackers and achieves comparable
results in comparison to deep learning trackers. DroTrack offers high frame
rates up to 1000 frame per second (fps) with the best location precision, more
than a set of state-of-the-art real-time trackers.
- Abstract(参考訳): DroTrackは、ドローンでキャプチャしたビデオシーケンスのための高速な視覚的単一オブジェクト追跡フレームワークである。
既存のオブジェクト追跡手法のほとんどは、隠蔽や乱雑な背景など、よく知られた課題に対処するために設計されている。
ドローンの複雑な動き、すなわち3次元空間における複数の自由度は、高い不確実性を引き起こす。
不確実性は、スケール推定における不正確な位置予測とファジィ性をもたらす。
DroTrackはオブジェクト表現とモーション幾何学の依存関係を発見することでそのような問題を解決する。
ファジィc平均(fcm)に基づく効果的なオブジェクトセグメンテーションを実装した。
空間情報を会員関数に組み込んで最も識別性の高いセグメントをクラスタ化する。
次に、事前学習された畳み込みニューラルネットワーク(CNN)モデルを用いてオブジェクトセグメンテーションを強化する。
DroTrackはまた、幾何学的な角運動を利用して信頼できる物体スケールを推定する。
51,462フレームの2つのデータセットを用いた実験結果と性能評価について検討した。
fcmセグメンテーションと角スケーリングの組み合わせはドロトラック精度を最大$9\%向上させ、中心位置誤差を平均で$162$ピクセル減少させた。
DroTrackは、すべての高速トラッカーを上回り、ディープラーニングトラッカーと同等の結果を得る。
drotrackは、最高1000フレーム/秒(fps)の高フレームレートを、最高の位置精度で提供し、最先端のリアルタイムトラッカー以上のものを提供している。
関連論文リスト
- DenseTrack: Drone-based Crowd Tracking via Density-aware Motion-appearance Synergy [33.57923199717605]
ドローンによる群集追跡は、空中からの物体の正確な識別と監視に困難に直面している。
これらの課題に対処するために、密度認識追跡(DenseTrack)フレームワークを提案する。
DenseTrackは、群衆のカウントに乗じて、オブジェクトの位置を正確に決定し、視覚とモーションのキューを混ぜて、小規模オブジェクトの追跡を改善する。
論文 参考訳(メタデータ) (2024-07-24T13:39:07Z) - SeqTrack3D: Exploring Sequence Information for Robust 3D Point Cloud
Tracking [26.405519771454102]
本稿では,SeqTrack3DというトラッカーとSequence-to-Sequenceトラッキングパラダイムを導入し,連続フレーム間の目標運動をキャプチャする。
本手法は, 重要点の少ないシーンにおいても, 歴史的ボックスからの位置情報を有効活用することにより, ロバストなトラッキングを実現する。
大規模なデータセットで実施された実験は、SeqTrack3Dが新しい最先端のパフォーマンスを実現することを示している。
論文 参考訳(メタデータ) (2024-02-26T02:14:54Z) - RaTrack: Moving Object Detection and Tracking with 4D Radar Point Cloud [10.593320435411714]
レーダベースのトラッキングに適した革新的なソリューションであるRaTrackを紹介します。
本手法は,動き推定モジュールによって強化された動き分割とクラスタリングに焦点を当てる。
RaTrackは移動物体の追跡精度が優れており、最先端の技術をはるかに上回っている。
論文 参考訳(メタデータ) (2023-09-18T13:02:29Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
生のLiDARスキャンにおける物体の点雲は、通常スパースで不完全であるため、正確な目標固有検出を行うのは簡単ではない。
DMTは、複雑な3D検出器の使用を完全に除去する3Dトラッキングネットワークである。
論文 参考訳(メタデータ) (2022-03-08T17:49:07Z) - DeepScale: An Online Frame Size Adaptation Framework to Accelerate
Visual Multi-object Tracking [8.878656943106934]
DeepScaleは、追跡スループットを高速化するモデルに依存しないフレームサイズ選択アプローチである。
フレームサイズを実行時に適応させることで、トラッキング精度と速度の適切なトレードオフを見つけることができる。
最先端のトラッカーであるDeepScale++と比較して、DeepScaleの亜種であるDeepScale++は、適度な劣化だけで1.57倍の高速化を実現している。
論文 参考訳(メタデータ) (2021-07-22T00:12:58Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
マルチオブジェクトトラッキング(MOT)により、移動ロボットは周囲の物体を3次元空間と時間で位置づけすることで、良好な動作計画とナビゲーションを行うことができる。
既存の方法は、深度センサー(例えばLiDAR)を使用して3D空間のターゲットを検出し追跡するが、信号の間隔が限られているため、検出範囲は限られている。
我々は,両方のセンサモダリティから利用可能な物体を全て統合し,シーンのダイナミックスを適切に解釈する簡易なトラッキング定式化であるeagermotを提案する。
論文 参考訳(メタデータ) (2021-04-29T22:30:29Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。