論文の概要: DenseTrack: Drone-based Crowd Tracking via Density-aware Motion-appearance Synergy
- arxiv url: http://arxiv.org/abs/2407.17272v2
- Date: Fri, 26 Jul 2024 07:40:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 12:30:11.173590
- Title: DenseTrack: Drone-based Crowd Tracking via Density-aware Motion-appearance Synergy
- Title(参考訳): DenseTrack:密度認識型モーション・アウェアランス・シナジーによるドローンによる群集追跡
- Authors: Yi Lei, Huilin Zhu, Jingling Yuan, Guangli Xiang, Xian Zhong, Shengfeng He,
- Abstract要約: ドローンによる群集追跡は、空中からの物体の正確な識別と監視に困難に直面している。
これらの課題に対処するために、密度認識追跡(DenseTrack)フレームワークを提案する。
DenseTrackは、群衆のカウントに乗じて、オブジェクトの位置を正確に決定し、視覚とモーションのキューを混ぜて、小規模オブジェクトの追跡を改善する。
- 参考スコア(独自算出の注目度): 33.57923199717605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drone-based crowd tracking faces difficulties in accurately identifying and monitoring objects from an aerial perspective, largely due to their small size and close proximity to each other, which complicates both localization and tracking. To address these challenges, we present the Density-aware Tracking (DenseTrack) framework. DenseTrack capitalizes on crowd counting to precisely determine object locations, blending visual and motion cues to improve the tracking of small-scale objects. It specifically addresses the problem of cross-frame motion to enhance tracking accuracy and dependability. DenseTrack employs crowd density estimates as anchors for exact object localization within video frames. These estimates are merged with motion and position information from the tracking network, with motion offsets serving as key tracking cues. Moreover, DenseTrack enhances the ability to distinguish small-scale objects using insights from the visual-language model, integrating appearance with motion cues. The framework utilizes the Hungarian algorithm to ensure the accurate matching of individuals across frames. Demonstrated on DroneCrowd dataset, our approach exhibits superior performance, confirming its effectiveness in scenarios captured by drones.
- Abstract(参考訳): ドローンによる群集の追跡は、物体を空中から正確に識別し、監視するのに困難に直面している。
これらの課題に対処するために、密度認識追跡(DenseTrack)フレームワークを提案する。
DenseTrackは、群衆のカウントに乗じて、オブジェクトの位置を正確に決定し、視覚とモーションのキューを混ぜて、小規模オブジェクトの追跡を改善する。
具体的には、追跡精度と信頼性を高めるために、クロスフレーム動作の問題に対処する。
DenseTrackは、ビデオフレーム内の正確なオブジェクトローカライゼーションのためのアンカーとして、群衆密度推定を使用している。
これらの推定値は、トラッキングネットワークからのモーションと位置情報とマージされ、キートラッキングキューとして動作オフセットが機能する。
さらに、DenseTrackは、視覚言語モデルからの洞察を用いて小さなオブジェクトを区別する機能を強化し、外観をモーションキューに統合する。
このフレームワークはハンガリーのアルゴリズムを利用して、フレーム間の個人間の正確なマッチングを保証する。
DroneCrowdのデータセットを例にとり、当社のアプローチは優れたパフォーマンスを示し、ドローンが捉えたシナリオにおける有効性を確認した。
関連論文リスト
- No Identity, no problem: Motion through detection for people tracking [48.708733485434394]
本稿では,検出のみの監視を行いながら,動きの手がかりを利用する手法を提案する。
提案アルゴリズムは,2つの画像間の2次元運動推定とともに,2つの異なるタイミングで熱マップを検出する。
提案手法は,MOT17およびWILDTRACKデータセット上でのマルチターゲット・シングルビュー・マルチターゲット・トラッキングに対して,最先端の結果を提供する。
論文 参考訳(メタデータ) (2024-11-25T15:13:17Z) - SCTracker: Multi-object tracking with shape and confidence constraints [11.210661553388615]
本稿では,SCTrackerという形状制約と信頼性に基づく多目的トラッカーを提案する。
トラックと検出の間のコスト行列を計算するために, 形状制約付きユニオン距離の割り込みを適用した。
検出信頼度に基づくカルマンフィルタを用いて動作状態を更新し、検出信頼性が低い場合にトラッキング性能を向上させる。
論文 参考訳(メタデータ) (2023-05-16T15:18:42Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - Track without Appearance: Learn Box and Tracklet Embedding with Local
and Global Motion Patterns for Vehicle Tracking [45.524183249765244]
車両追跡は多目的追跡(MOT)分野において重要な課題である。
本稿では,外見情報のない車両追跡における動作パターンの重要性について検討する。
本稿では, 長期追跡のための関連課題を, 排他的かつ完全な運動情報を用いて解決する手法を提案する。
論文 参考訳(メタデータ) (2021-08-13T02:27:09Z) - Tracking by Joint Local and Global Search: A Target-aware Attention
based Approach [63.50045332644818]
本研究では、ロバストな追跡のための局所的・グローバルな共同探索を行うための新たな目標認識型アテンション機構(TANet)を提案する。
具体的には、ターゲットオブジェクトパッチと連続ビデオフレームの特徴を抽出し、それらをデコーダネットワークに追従して、ターゲットを意識したグローバルアテンションマップを生成する。
追跡手順において、ロバストな追跡のための候補探索領域を探索することにより、ターゲット認識の注意を複数のトラッカーと統合する。
論文 参考訳(メタデータ) (2021-06-09T06:54:15Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeSは、エンドツーエンドの検出を支援するために追跡の手がかりを利用するオンライン共同検出および追跡モデルです。
TraDeSは、以前のオブジェクトの機能を伝播するために使用されるコストボリュームでオブジェクト追跡オフセットを推測します。
論文 参考訳(メタデータ) (2021-03-16T02:34:06Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT)法は、トラッキング・バイ・検出のパラダイムに従っている。
混み合ったシーンに適したMOTパラダイムであるトラッキング・バイ・カウントを提案する。
論文 参考訳(メタデータ) (2020-07-18T19:51:53Z) - DroTrack: High-speed Drone-based Object Tracking Under Uncertainty [0.23204178451683263]
DroTrackは、ドローンがキャプチャしたビデオシーケンスのための高速なビジュアル単一オブジェクト追跡フレームワークである。
ファジィC平均に基づく効果的なオブジェクトセグメンテーションを実装した。
また、幾何角運動を利用して信頼度の高い物体スケールを推定する。
論文 参考訳(メタデータ) (2020-05-02T13:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。