DroTrack: High-speed Drone-based Object Tracking Under Uncertainty
- URL: http://arxiv.org/abs/2005.00828v1
- Date: Sat, 2 May 2020 13:16:16 GMT
- Title: DroTrack: High-speed Drone-based Object Tracking Under Uncertainty
- Authors: Ali Hamdi, Flora Salim, Du Yong Kim
- Abstract summary: DroTrack is a high-speed visual single-object tracking framework for drone-captured video sequences.
We implement an effective object segmentation based on Fuzzy C Means.
We also leverage the geometrical angular motion to estimate a reliable object scale.
- Score: 0.23204178451683263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present DroTrack, a high-speed visual single-object tracking framework for
drone-captured video sequences. Most of the existing object tracking methods
are designed to tackle well-known challenges, such as occlusion and cluttered
backgrounds. The complex motion of drones, i.e., multiple degrees of freedom in
three-dimensional space, causes high uncertainty. The uncertainty problem leads
to inaccurate location predictions and fuzziness in scale estimations. DroTrack
solves such issues by discovering the dependency between object representation
and motion geometry. We implement an effective object segmentation based on
Fuzzy C Means (FCM). We incorporate the spatial information into the membership
function to cluster the most discriminative segments. We then enhance the
object segmentation by using a pre-trained Convolution Neural Network (CNN)
model. DroTrack also leverages the geometrical angular motion to estimate a
reliable object scale. We discuss the experimental results and performance
evaluation using two datasets of 51,462 drone-captured frames. The combination
of the FCM segmentation and the angular scaling increased DroTrack precision by
up to $9\%$ and decreased the centre location error by $162$ pixels on average.
DroTrack outperforms all the high-speed trackers and achieves comparable
results in comparison to deep learning trackers. DroTrack offers high frame
rates up to 1000 frame per second (fps) with the best location precision, more
than a set of state-of-the-art real-time trackers.
Related papers
- DenseTrack: Drone-based Crowd Tracking via Density-aware Motion-appearance Synergy [33.57923199717605]
Drone-based crowd tracking faces difficulties in accurately identifying and monitoring objects from an aerial perspective.
To address these challenges, we present the Density-aware Tracking (DenseTrack) framework.
DenseTrack capitalizes on crowd counting to precisely determine object locations, blending visual and motion cues to improve the tracking of small-scale objects.
arXiv Detail & Related papers (2024-07-24T13:39:07Z) - SeqTrack3D: Exploring Sequence Information for Robust 3D Point Cloud
Tracking [26.405519771454102]
We introduce Sequence-to-Sequence tracking paradigm and a tracker named SeqTrack3D to capture target motion across continuous frames.
This novel method ensures robust tracking by leveraging location priors from historical boxes, even in scenes with sparse points.
Experiments conducted on large-scale datasets show that SeqTrack3D achieves new state-of-the-art performances.
arXiv Detail & Related papers (2024-02-26T02:14:54Z) - RaTrack: Moving Object Detection and Tracking with 4D Radar Point Cloud [10.593320435411714]
We introduce RaTrack, an innovative solution tailored for radar-based tracking.
Our method focuses on motion segmentation and clustering, enriched by a motion estimation module.
RaTrack showcases superior tracking precision of moving objects, largely surpassing the performance of the state of the art.
arXiv Detail & Related papers (2023-09-18T13:02:29Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - DeepScale: An Online Frame Size Adaptation Framework to Accelerate
Visual Multi-object Tracking [8.878656943106934]
DeepScale is a model agnostic frame size selection approach to accelerate tracking throughput.
It can find a suitable trade-off between tracking accuracy and speed by adapting frame sizes at run time.
Compared to a state-of-the-art tracker, DeepScale++, a variant of DeepScale achieves 1.57X accelerated with only moderate degradation.
arXiv Detail & Related papers (2021-07-22T00:12:58Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time.
Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal.
We propose EagerMOT, a simple tracking formulation that integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics.
arXiv Detail & Related papers (2021-04-29T22:30:29Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.