論文の概要: Zero-Shot Transfer Learning with Synthesized Data for Multi-Domain
Dialogue State Tracking
- arxiv url: http://arxiv.org/abs/2005.00891v1
- Date: Sat, 2 May 2020 18:00:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 12:44:16.869989
- Title: Zero-Shot Transfer Learning with Synthesized Data for Multi-Domain
Dialogue State Tracking
- Title(参考訳): 多領域対話状態追跡のための合成データを用いたゼロショット転送学習
- Authors: Giovanni Campagna and Agata Foryciarz and Mehrad Moradshahi and Monica
S. Lam
- Abstract要約: 合成データによるデータ拡張により、ゼロショット学習の精度が向上することを示す。
ドメインごとの平均的なゼロショット学習状態を21%改善する。
- 参考スコア(独自算出の注目度): 8.151397072537797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot transfer learning for multi-domain dialogue state tracking can
allow us to handle new domains without incurring the high cost of data
acquisition. This paper proposes new zero-short transfer learning technique for
dialogue state tracking where the in-domain training data are all synthesized
from an abstract dialogue model and the ontology of the domain. We show that
data augmentation through synthesized data can improve the accuracy of
zero-shot learning for both the TRADE model and the BERT-based SUMBT model on
the MultiWOZ 2.1 dataset. We show training with only synthesized in-domain data
on the SUMBT model can reach about 2/3 of the accuracy obtained with the full
training dataset. We improve the zero-shot learning state of the art on average
across domains by 21%.
- Abstract(参考訳): マルチドメイン対話状態追跡のためのゼロショット転送学習は,高コストのデータ取得を伴わずに新たなドメインを処理できる。
本稿では,ドメイン内トレーニングデータを抽象対話モデルとドメインのオントロジから合成した対話状態追跡のためのゼロショート転送学習手法を提案する。
合成データによるデータ拡張により,MultiWOZ 2.1データセット上でのTRADEモデルとBERTベースのSUMBTモデルのゼロショット学習の精度が向上することを示す。
SUMBTモデルのドメイン内データのみを合成したトレーニングは、完全なトレーニングデータセットで得られた精度の約2/3に達する。
ドメイン全体で平均して,アートのゼロショット学習状態を21%向上させる。
関連論文リスト
- Diverse and Effective Synthetic Data Generation for Adaptable Zero-Shot Dialogue State Tracking [12.116834890063146]
合成データ生成によるトレーニングデータの多様性の向上により,ゼロショット対話状態追跡(DST)の性能向上を示す。
既存のDSTデータセットは、データ収集のコストが高いため、それらがカバーするアプリケーションドメイン数やスロットタイプに大きく制限されている。
この研究は、合成ゼロショットDSTデータセットを生成する新しい完全自動データ生成アプローチで、この課題に対処する。
論文 参考訳(メタデータ) (2024-05-21T03:04:14Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Training on Synthetic Data Beats Real Data in Multimodal Relation
Extraction [8.038421100401132]
本稿では,テキストや画像などの一意的なデータのみをトレーニング中に利用できるような,新たな問題設定について考察する。
我々は,実マルチモーダルテストデータ上で良好に動作する合成データから,マルチモーダル関係を訓練することを目指している。
完全合成画像で訓練された最良のモデルは、F1の3.76%のマージンで、実際のマルチモーダルデータで訓練された最先端モデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-05T08:11:34Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Domain Adaptation in Dialogue Systems using Transfer and Meta-Learning [12.64591916699374]
現在の生成ベースの対話システムは、少量のターゲットデータしか利用できない場合、新しい未知のドメインに適応できない。
トランスファーとメタラーニングを組み合わせることにより,未知の領域に適応する手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T16:16:57Z) - Dual-Teacher++: Exploiting Intra-domain and Inter-domain Knowledge with
Reliable Transfer for Cardiac Segmentation [69.09432302497116]
最先端の半教師付きドメイン適応フレームワークである Dual-Teacher++ を提案する。
ソースドメイン(MRなど)からのクロスモダリティ優先度を探索するドメイン間教師モデルと、ラベルのないターゲットドメインの知識を調査するドメイン内教師モデルを含む、新しいデュアル教師モデルを設計する。
このようにして、学生モデルは信頼できる二重ドメイン知識を得て、ターゲットドメインデータのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2021-01-07T05:17:38Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
大規模テキストコーパス上での自己教師対象による事前学習モデルは、英語テキスト要約タスクにおける最先端のパフォーマンスを達成する。
モデルは通常、数十万のデータポイントで微調整されるが、これは新しいニッチなドメインに要約を適用する際に、実現不可能な要件である。
我々は、教師なし、データセット固有の方法で要約のための訓練済みモデルを微調整するための、WikiTransferと呼ばれる新しい一般化可能な手法を紹介した。
論文 参考訳(メタデータ) (2020-10-24T08:36:49Z) - Multi-Domain Spoken Language Understanding Using Domain- and Task-Aware
Parameterization [78.93669377251396]
音声言語理解は、各ドメインでトレーニングデータのセットが利用できる教師付き学習問題として対処されてきた。
既存の1つのアプローチは、ドメイン間の共同トレーニングに共有パラメータを使用して、マルチドメイン学習を行うことによって、この問題を解決する。
本稿では,ドメイン固有モデルパラメータとタスク固有モデルパラメータを用いて,この手法のパラメータ化を改善することを提案する。
論文 参考訳(メタデータ) (2020-04-30T15:15:40Z) - Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog [70.79442700890843]
本稿では,対象ドメインと各ドメインの関連性を自動的に活用する新しい動的核融合ネットワーク(DF-Net)を提案する。
トレーニングデータが少ないと、平均13.9%の事前最良モデルを上回り、転送可能性を示す。
論文 参考訳(メタデータ) (2020-04-23T08:17:22Z) - Abstractive Summarization for Low Resource Data using Domain Transfer
and Data Synthesis [1.148539813252112]
本稿では,近年の抽象的な要約手法の性能向上のために,ドメイン転送とデータ合成について検討する。
新聞データに基づいて訓練された美術モデルのチューニング状態は、学生の反射データの性能を高める可能性があることを示す。
トレーニングに組み込むとROUGEスコアがさらに増加するテンプレートベースの新しいデータを合成するモデルを提案する。
論文 参考訳(メタデータ) (2020-02-09T17:49:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。