Cryogenic microwave-to-optical conversion using a triply-resonant
lithium niobate on sapphire transducer
- URL: http://arxiv.org/abs/2005.00897v1
- Date: Sat, 2 May 2020 18:26:18 GMT
- Title: Cryogenic microwave-to-optical conversion using a triply-resonant
lithium niobate on sapphire transducer
- Authors: Timothy P. McKenna, Jeremy D. Witmer, Rishi N. Patel, Wentao Jiang,
Rapha\"el Van Laer, Patricio Arrangoiz-Arriola, E. Alex Wollack, Jason F.
Herrmann, Amir H. Safavi-Naeini
- Abstract summary: We present an integrated electro-optic transducer that combines low-loss lithium niobate photonics with superconducting microwave resonators on a sapphire substrate.
Our triply-resonant device operates in a dilution refrigerator and converts microwave photons to optical photons with an on-chip efficiency of $6.6times 10-6$ and a conversion bandwidth of 20 MHz.
- Score: 1.606071974243323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks are likely to have a profound impact on the way we compute
and communicate in the future. In order to wire together superconducting
quantum processors over kilometer-scale distances, we need transducers that can
generate entanglement between the microwave and optical domains with high
fidelity. We present an integrated electro-optic transducer that combines
low-loss lithium niobate photonics with superconducting microwave resonators on
a sapphire substrate. Our triply-resonant device operates in a dilution
refrigerator and converts microwave photons to optical photons with an on-chip
efficiency of $6.6\times 10^{-6}$ and a conversion bandwidth of 20 MHz. We
discuss design trade-offs in this device, including strategies to manage
acoustic loss, and outline ways to increase the conversion efficiency in the
future.
Related papers
- Light-Induced Microwave Noise in Superconducting Microwave-Optical
Transducers [1.2874569408514918]
We study light-induced microwave noise in an integrated electro-optical transducer harnessing Pockels effect of thin film lithium niobate.
Our results gain insights into the mechanisms and corresponding mitigation strategies for light-induced microwave noise in superconducting microwave-optical transducers.
arXiv Detail & Related papers (2023-11-14T20:25:34Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Electro-optic transduction in silicon via GHz-frequency nanomechanics [7.513920571044517]
We show an efficient microwave-to-optical photon conversion efficiency of $1.8 times 10-7$ in a 3.3 MHz bandwidth.
Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon.
arXiv Detail & Related papers (2022-10-24T19:06:57Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - High efficiency coherent microwave-to-optics conversion via off-resonant
scattering [5.639495736553396]
We report a coherent microwave-to-optics transduction using Rydberg atoms and off-resonant scattering technique.
The high conversion efficiency is maintained for microwave photons range from thousands to about 50.
arXiv Detail & Related papers (2022-03-08T16:09:12Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Coherent and Purcell-enhanced emission from erbium dopants in a
cryogenic high-Q resonator [68.8204255655161]
A 19 micrometer thin erbium-doped crystal is integrated into a cryogenic Fabry-Perot resonator with a quality factor of nine million.
Our system enables coherent and efficient nodes for long-distance quantum networks.
arXiv Detail & Related papers (2020-06-25T07:53:16Z) - Cavity quantum electro-optics: Microwave-telecom conversion in the
quantum ground state [0.0]
We present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons.
The device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields.
arXiv Detail & Related papers (2020-05-26T14:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.