High efficiency coherent microwave-to-optics conversion via off-resonant
scattering
- URL: http://arxiv.org/abs/2203.04178v1
- Date: Tue, 8 Mar 2022 16:09:12 GMT
- Title: High efficiency coherent microwave-to-optics conversion via off-resonant
scattering
- Authors: Hai-Tao Tu, Kai-Yu Liao, Zuan-Xian Zhang, Xiao-Hong Liu, Shun-Yuan
Zheng, Shu-Zhe Yang, Xin-Ding Zhang, Hui Yan, Shi-Liang Zhu
- Abstract summary: We report a coherent microwave-to-optics transduction using Rydberg atoms and off-resonant scattering technique.
The high conversion efficiency is maintained for microwave photons range from thousands to about 50.
- Score: 5.639495736553396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum transducers that can convert quantum signals from the microwave to
the optical domain are a crucial optical interface for quantum information
technology. Coherent microwave-to-optics conversions have been realized with
various physical platforms, but all of them are limited to low efficiencies of
less than 50\%, the threshold of the no-cloning quantum regime. Here we report
a coherent microwave-to-optics transduction using Rydberg atoms and
off-resonant scattering technique with an efficiency of $82\pm 2\%$ and a
bandwidth of about 1 MHz. The high conversion efficiency is maintained for
microwave photons range from thousands to about 50, suggesting that our
transduction is readily applicable to the single-photon level. Without
requiring cavities or aggressive cooling to quantum ground states, our results
would push atomic transducers closer to practical applications in quantum
technologies.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Quantum-enabled continuous microwave-to-optics frequency conversion [6.646547697436899]
A quantum interface between microwave and optical photons is essential for entangling remote superconducting quantum processors.
We present a platform that meets these criteria, utilizing a combination of electrostatic and optomechanical interactions in devices made entirely from crystalline silicon.
arXiv Detail & Related papers (2024-06-04T18:34:01Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Coherent and Purcell-enhanced emission from erbium dopants in a
cryogenic high-Q resonator [68.8204255655161]
A 19 micrometer thin erbium-doped crystal is integrated into a cryogenic Fabry-Perot resonator with a quality factor of nine million.
Our system enables coherent and efficient nodes for long-distance quantum networks.
arXiv Detail & Related papers (2020-06-25T07:53:16Z) - Cryogenic microwave-to-optical conversion using a triply-resonant
lithium niobate on sapphire transducer [1.606071974243323]
We present an integrated electro-optic transducer that combines low-loss lithium niobate photonics with superconducting microwave resonators on a sapphire substrate.
Our triply-resonant device operates in a dilution refrigerator and converts microwave photons to optical photons with an on-chip efficiency of $6.6times 10-6$ and a conversion bandwidth of 20 MHz.
arXiv Detail & Related papers (2020-05-02T18:26:18Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.