論文の概要: Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network
- arxiv url: http://arxiv.org/abs/2005.00983v1
- Date: Sun, 3 May 2020 04:28:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 06:40:58.638735
- Title: Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network
- Title(参考訳): ジョイントSRVDNet:ジョイントスーパーレゾリューションと車両検出ネットワーク
- Authors: Moktari Mostofa, Syeda Nyma Ferdous, Benjamin S.Riggan, and Nasser M.
Nasrabadi
- Abstract要約: 車両の識別・高分解能画像を生成するための統合超解像・車両検出ネットワーク(Joint-SRVDNet)を提案する。
空中画像はMsGAN(Multiscale Generative Adversarial Network)を用いて4倍の係数でアップスケールされる。
ネットワークは、ターゲットの階層的特徴と識別的特徴を共同で学習し、最適な超解像結果を生成する。
- 参考スコア(独自算出の注目度): 17.57284924547865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many domestic and military applications, aerial vehicle detection and
super-resolutionalgorithms are frequently developed and applied independently.
However, aerial vehicle detection on super-resolved images remains a
challenging task due to the lack of discriminative information in the
super-resolved images. To address this problem, we propose a Joint
Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to
generate discriminative, high-resolution images of vehicles fromlow-resolution
aerial images. First, aerial images are up-scaled by a factor of 4x using a
Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple
intermediate outputs with increasingresolutions. Second, a detector is trained
on super-resolved images that are upscaled by factor 4x usingMsGAN architecture
and finally, the detection loss is minimized jointly with the super-resolution
loss toencourage the target detector to be sensitive to the subsequent
super-resolution training. The network jointlylearns hierarchical and
discriminative features of targets and produces optimal super-resolution
results. Weperform both quantitative and qualitative evaluation of our proposed
network on VEDAI, xView and DOTAdatasets. The experimental results show that
our proposed framework achieves better visual quality than thestate-of-the-art
methods for aerial super-resolution with 4x up-scaling factor and improves the
accuracy ofaerial vehicle detection.
- Abstract(参考訳): 多くの国内および軍事用途において、航空機の検知と超解像アルゴリズムは独立して開発・適用されることが多い。
しかし,超解像における航空車両検出は,超解像における識別情報が欠如しているため,依然として困難な課題である。
この問題に対処するために,低分解能空中画像から車両の識別・高分解能画像を生成するジョイント・スーパーリゾリューション・車両検出ネットワーク(Joint-SRVDNet)を提案する。
まず,MsGAN(Multiscale Generative Adversarial Network)を用いて,分解能の増大を伴う複数の中間出力を有する空中画像を4倍にスケールアップする。
第2に、MsGANアーキテクチャを用いて第4因子によってアップスケールされた超解像に基づいて検出器をトレーニングし、最終的に、検出損失を、超解像損失と共同で最小化し、ターゲット検出器をその後の超解像トレーニングに敏感にするために、駆動する。
このネットワークは、ターゲットの階層的および識別的特徴を共同学習し、最適な超解像結果を生成する。
weperformはvedai, xview, dotadatasets上で提案するネットワークの定量的および質的評価を行う。
実験の結果,提案手法は4倍のアップスケーリング係数を持つ空中超解像法よりも高画質であり,航空車両検出の精度が向上していることがわかった。
関連論文リスト
- LSwinSR: UAV Imagery Super-Resolution based on Linear Swin Transformer [7.3817359680010615]
超高分解能技術は無人航空機(UAV)に特に有用である
本稿では,UAV画像の高分解能化のために,最先端のSwin Transformerに基づく新しいネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-17T20:14:10Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
我々は、異なる解像度画像から特徴を独立して抽出する、Praamid Grafting Network (PGNet) と呼ばれるワンステージフレームワークを提案する。
CNNブランチが壊れた詳細情報をよりホモロジーに組み合わせられるように、アテンションベースのクロスモデルグラフティングモジュール (CMGM) が提案されている。
我々は,4K-8K解像度で5,920個の画像を含む超高分解能塩度検出データセットUHRSDを新たに提供した。
論文 参考訳(メタデータ) (2022-04-11T12:22:21Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
実世界の画像超解像(SR)タスクは、しばしば、教師付き技術の適用を制限するペアデータセットを持っていない。
本稿では,非バイアスのOTマップを知覚輸送コストで学習する未ペアSRのアルゴリズムを提案する。
我々のアルゴリズムは、大規模無人AIM-19データセット上で、最先端のパフォーマンスをほぼ提供する。
論文 参考訳(メタデータ) (2022-02-02T16:21:20Z) - High Quality Segmentation for Ultra High-resolution Images [72.97958314291648]
超高分解能セグメンテーション精錬作業のための連続精細モデルを提案する。
提案手法は画像分割精細化において高速かつ効果的である。
論文 参考訳(メタデータ) (2021-11-29T11:53:06Z) - Multi-Spectral Multi-Image Super-Resolution of Sentinel-2 with
Radiometric Consistency Losses and Its Effect on Building Delineation [23.025397327720874]
マルチスペクトルリモートセンシング画像にMISR(Multi-image Super- resolution)を適用した最初の結果を示す。
我々は,MISRが画像の忠実度測定値において,単一画像の超解像やその他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-05T02:49:04Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
本研究は,マルチイメージ超解像課題に効果的に取り組む新しい残像注意モデル(RAMS)を提案する。
本研究では,3次元畳み込みによる視覚特徴の注意機構を導入し,意識的なデータ融合と情報抽出を実現する。
我々の表現学習ネットワークは、冗長な低周波信号を流すためにネストした残差接続を広範囲に利用している。
論文 参考訳(メタデータ) (2020-07-06T22:54:02Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z) - Unsupervised Real Image Super-Resolution via Generative Variational
AutoEncoder [47.53609520395504]
古典的な例に基づく画像超解法を再考し、知覚的画像超解法のための新しい生成モデルを考案する。
本稿では,変分オートエンコーダを用いた共同画像デノベーションと超解像モデルを提案する。
判別器の助けを借りて、超分解能サブネットワークのオーバーヘッドを加味して、分解された画像をフォトリアリスティックな視覚的品質で超解凍する。
論文 参考訳(メタデータ) (2020-04-27T13:49:36Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。