論文の概要: Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2007.03107v2
- Date: Wed, 8 Jul 2020 10:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 02:18:11.922694
- Title: Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks
- Title(参考訳): 残留特徴注意深層ニューラルネットワークを用いたリモートセンシング画像のマルチイメージ超解像
- Authors: Francesco Salvetti, Vittorio Mazzia, Aleem Khaliq, Marcello Chiaberge
- Abstract要約: 本研究は,マルチイメージ超解像課題に効果的に取り組む新しい残像注意モデル(RAMS)を提案する。
本研究では,3次元畳み込みによる視覚特徴の注意機構を導入し,意識的なデータ融合と情報抽出を実現する。
我々の表現学習ネットワークは、冗長な低周波信号を流すためにネストした残差接続を広範囲に利用している。
- 参考スコア(独自算出の注目度): 1.3764085113103222
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have been consistently proved
state-of-the-art results in image Super-Resolution (SR), representing an
exceptional opportunity for the remote sensing field to extract further
information and knowledge from captured data. However, most of the works
published in the literature have been focusing on the Single-Image
Super-Resolution problem so far. At present, satellite based remote sensing
platforms offer huge data availability with high temporal resolution and low
spatial resolution. In this context, the presented research proposes a novel
residual attention model (RAMS) that efficiently tackles the multi-image
super-resolution task, simultaneously exploiting spatial and temporal
correlations to combine multiple images. We introduce the mechanism of visual
feature attention with 3D convolutions in order to obtain an aware data fusion
and information extraction of the multiple low-resolution images, transcending
limitations of the local region of convolutional operations. Moreover, having
multiple inputs with the same scene, our representation learning network makes
extensive use of nestled residual connections to let flow redundant
low-frequency signals and focus the computation on more important
high-frequency components. Extensive experimentation and evaluations against
other available solutions, either for single or multi-image super-resolution,
have demonstrated that the proposed deep learning-based solution can be
considered state-of-the-art for Multi-Image Super-Resolution for remote sensing
applications.
- Abstract(参考訳): 畳み込みニューラルネットワーク(cnns)は、画像スーパーレゾリューション(sr)における最先端の成果を一貫して証明されており、リモートセンシング分野において、キャプチャされたデータからさらなる情報や知識を抽出する絶好の機会である。
しかし、文献で発表された作品の多くは、シングルイメージ超解法問題に焦点を当てている。
現在、衛星ベースのリモートセンシングプラットフォームは、高時間分解能と低空間分解能の巨大なデータ可用性を提供している。
本研究は,マルチイメージ超解像課題に効果的に取り組み,同時に空間的・時間的相関を利用して複数の画像を組み合わせる新しい残像注意モデル(RAMS)を提案する。
本研究では3次元畳み込みによる視覚特徴の注意機構を導入し,複数の低解像度画像の認識データ融合と情報抽出を行い,局所的な畳み込み操作の限界を克服する。
さらに,同じシーンで複数の入力を複数持つことで,ネステッド残差接続を広範囲に活用し,冗長な低周波信号を流し,より重要な高周波成分に演算を集中させる。
単一画像または複数画像の超解像に対して利用可能な他のソリューションに対する大規模な実験と評価を行い、提案した深層学習に基づくソリューションがリモートセンシングアプリケーションにおけるマルチイメージ超解像の最先端とみなすことができることを示した。
関連論文リスト
- Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
光リモートセンシング画像(RSI)のためのSODは、光学RSIから視覚的に特徴的な物体や領域を探索・抽出することを目的としている。
光学RSIにおけるSODに並列なマルチスケールアテンションを持つリレーショナル推論ネットワークを提案する。
提案するRRNetは,既存の最先端SODコンペティタよりも質的,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-27T07:18:32Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
低分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させるトランスフォーマーに基づくネットワークを設計する。
LR-HSIは主スペクトル構造を持つため、ネットワークは空間的詳細推定に重点を置いている。
様々な実験と品質指標は、他の最先端手法と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2021-09-05T14:00:34Z) - A Parallel Down-Up Fusion Network for Salient Object Detection in
Optical Remote Sensing Images [82.87122287748791]
光リモートセンシング画像(RSI)における有意な物体検出のための新しい並列ダウンアップフュージョンネットワーク(PDF-Net)を提案する。
In-pathの低レベル・高レベルな特徴とクロスパスの多解像度な特徴をフル活用して、多様なスケールのサルエントオブジェクトを識別し、散らかった背景を抑える。
ORSSDデータセットの実験により、提案したネットワークは定性的かつ定量的に最先端のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T05:27:57Z) - High Quality Remote Sensing Image Super-Resolution Using Deep Memory
Connected Network [21.977093907114217]
単一画像の超解像は、ターゲット検出や画像分類といった多くの用途において重要である。
本稿では,畳み込みニューラルネットワークによる高画質超解像画像の再構成手法として,DeepMemory Connected Network (DMCN)を提案する。
論文 参考訳(メタデータ) (2020-10-01T15:06:02Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
本稿では,高分解能ハイパースペクトル像と高分解能マルチスペクトル像を融合させる,深部畳み込みニューラルネットワークの簡易かつ効率的なアーキテクチャを提案する。
提案したネットワークアーキテクチャは,近年の最先端ハイパースペクトル画像の超解像化手法と比較して,最高の性能を達成している。
論文 参考訳(メタデータ) (2020-05-29T05:56:50Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。