論文の概要: Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2005.01090v1
- Date: Sun, 3 May 2020 14:02:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 07:04:50.020856
- Title: Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いた広帯域高度計データからの内部潮流のフィルタリング
- Authors: Redouane Lguensat, Ronan Fablet, Julien Le Sommer, Sammy Metref,
Emmanuel Cosme, Kaouther Ouenniche, Lucas Drumetz, Jonathan Gula
- Abstract要約: 本稿では畳み込みニューラルネットワーク(ConvNets)を用いて、内潮信号のないフィールドを推定する。
また,海面温度(SST)などの他の海面変数からの追加データについても検討した。
- 参考スコア(独自算出の注目度): 9.541153192112194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The upcoming Surface Water Ocean Topography (SWOT) satellite altimetry
mission is expected to yield two-dimensional high-resolution measurements of
Sea Surface Height (SSH), thus allowing for a better characterization of the
mesoscale and submesoscale eddy field. However, to fulfill the promises of this
mission, filtering the tidal component of the SSH measurements is necessary.
This challenging problem is crucial since the posterior studies done by
physical oceanographers using SWOT data will depend heavily on the selected
filtering schemes. In this paper, we cast this problem into a supervised
learning framework and propose the use of convolutional neural networks
(ConvNets) to estimate fields free of internal tide signals. Numerical
experiments based on an advanced North Atlantic simulation of the ocean
circulation (eNATL60) show that our ConvNet considerably reduces the imprint of
the internal waves in SSH data even in regions unseen by the neural network. We
also investigate the relevance of considering additional data from other sea
surface variables such as sea surface temperature (SST).
- Abstract(参考訳): 近日予定の表層海面地形(SWOT)衛星高度測定ミッションでは、海面高度(SSH)の2次元高分解能測定が期待され、メソスケールとサブメソスケールの渦田のより優れた評価が可能となる。
しかし、このミッションの約束を果たすためには、SSH測定の潮位成分をフィルタリングする必要がある。
SWOTデータを用いた物理海洋学者による後方調査は、選択されたフィルタリング方式に大きく依存するため、この課題は極めて重要である。
本稿では,この問題を教師あり学習フレームワークにキャストし,畳み込みニューラルネットワーク(convnets)を用いて内部潮流信号のない場を推定する手法を提案する。
海洋循環の先進的な北大西洋シミュレーション(eNATL60)に基づく数値実験により、我々のConvNetは、ニューラルネットワークで見えない領域においても、SSHデータの内部波のインプリントを著しく減少させることが示された。
また,海面温度 (SST) などの他の海面変数からの追加データについても検討した。
関連論文リスト
- A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Learning of Sea Surface Height Interpolation from Multi-variate Simulated Satellite Observations [0.0]
我々は、このデータに基づいてAttention-Based-Decoderディープラーニングネットワーク(textscabed)をトレーニングする。
SST情報の有無にかかわらず、教師付きまたは教師なしの損失関数を用いて、AbeD再建の評価を行った。
オーシャンデータチャレンジ2021の実際のSSH観測から、この学習戦略とSSTの併用により、OIと比較してルート平均2乗誤差が24%減少することがわかった。
論文 参考訳(メタデータ) (2023-10-11T16:09:09Z) - Transforming Observations of Ocean Temperature with a Deep Convolutional
Residual Regressive Neural Network [0.0]
海面温度(SST)は、地上の真理、リモートセンシング、ハイブリッドモデル手法を通じて測定できる、必須の気候変動である。
ここでは,20世紀後半から21世紀初頭にかけてのいくつかの技術進歩を応用して,SST監視の進展を祝福する。
本研究では, AMSR-E と MODIS を高分解能に融合させるため, 既存の水循環観測フレームワークである Flux to Flow (F2F) を開発した。
我々のニューラルネットワークアーキテクチャは、深い畳み込み残留回帰ニューラルネットワークに制約されている。
論文 参考訳(メタデータ) (2023-06-16T17:35:11Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Scale-aware neural calibration for wide swath altimetry observations [0.0]
海面高度 (SSH) はメソスケールの海面力学を観測・研究するための重要な物理パラメータである。
数十年間、SSH製品の地域規模と世界規模でのマッピングは、ナディル衛星高度計に依存してきた。
表面水と海洋地形(SWOT)ミッションは、SSHの広視野2次元観測を初めて取得する新しいセンサーを配備する。
論文 参考訳(メタデータ) (2023-02-09T08:46:40Z) - Inversion of sea surface currents from satellite-derived SST-SSH
synergies with 4DVarNets [32.84891435899833]
老化のダイナミクスは,100km以下の水平スケールと10日以下の時間スケールにおいて重要であることが期待される。
ここでは、観測された海面トレーサ間の相乗効果をよりよく活用するための学習に基づくスキームについて検討する。
具体的には、4DVarNetスキームを開発し、トレーニング可能な観測値と変分データ同化の定式化を利用する。
論文 参考訳(メタデータ) (2022-11-23T15:53:54Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Application of Deep Learning-based Interpolation Methods to Nearshore
Bathymetry [0.82354995224692]
本研究では, 深層学習に基づく深層水深計測手法について, 疎度, マルチスケール計測による評価を行った。
本稿では, 深部ニューラルネットワーク(DNN)を用いて, 深部潜水量計の後方推定を計算し, 後方分布からサンプルを抽出する条件付き生成逆ネットワーク(cGAN)を提案する。
論文 参考訳(メタデータ) (2020-11-19T08:22:00Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
拡張スライスされたワッサーシュタイン距離(ASWD)と呼ばれる新しい距離測定法を提案する。
ASWDは、ニューラルネットワークによってパラメータ化された高次元超曲面への最初のマッピングサンプルによって構成される。
数値的な結果から、ASWDは、合成問題と実世界の問題の両方において、他のワッサーシュタイン変種を著しく上回っていることが示されている。
論文 参考訳(メタデータ) (2020-06-15T23:00:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。