Neural Data-to-Text Generation via Jointly Learning the Segmentation and
Correspondence
- URL: http://arxiv.org/abs/2005.01096v1
- Date: Sun, 3 May 2020 14:28:28 GMT
- Title: Neural Data-to-Text Generation via Jointly Learning the Segmentation and
Correspondence
- Authors: Xiaoyu Shen, Ernie Chang, Hui Su, Jie Zhou, Dietrich Klakow
- Abstract summary: We propose to explicitly segment target text into fragment units and align them with their data correspondences.
The resulting architecture maintains the same expressive power as neural attention models.
On both E2E and WebNLG benchmarks, we show the proposed model consistently outperforms its neural attention counterparts.
- Score: 48.765579605145454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neural attention model has achieved great success in data-to-text
generation tasks. Though usually excelling at producing fluent text, it suffers
from the problem of information missing, repetition and "hallucination". Due to
the black-box nature of the neural attention architecture, avoiding these
problems in a systematic way is non-trivial. To address this concern, we
propose to explicitly segment target text into fragment units and align them
with their data correspondences. The segmentation and correspondence are
jointly learned as latent variables without any human annotations. We further
impose a soft statistical constraint to regularize the segmental granularity.
The resulting architecture maintains the same expressive power as neural
attention models, while being able to generate fully interpretable outputs with
several times less computational cost. On both E2E and WebNLG benchmarks, we
show the proposed model consistently outperforms its neural attention
counterparts.
Related papers
- Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
Natural language serves as a common and straightforward control signal for humans to interact seamlessly with machines.
We propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model.
It undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Extractive Text Summarization Using Generalized Additive Models with
Interactions for Sentence Selection [0.0]
This work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.
arXiv Detail & Related papers (2022-12-21T00:56:50Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Unsupervised Mismatch Localization in Cross-Modal Sequential Data [5.932046800902776]
We develop an unsupervised learning algorithm that can infer the relationship between content-mismatched cross-modal data.
We propose a hierarchical Bayesian deep learning model, named mismatch localization variational autoencoder (ML-VAE), that decomposes the generative process of the speech into hierarchically structured latent variables.
Our experimental results show that ML-VAE successfully locates the mismatch between text and speech, without the need for human annotations.
arXiv Detail & Related papers (2022-05-05T14:23:27Z) - Entity-Conditioned Question Generation for Robust Attention Distribution
in Neural Information Retrieval [51.53892300802014]
We show that supervised neural information retrieval models are prone to learning sparse attention patterns over passage tokens.
Using a novel targeted synthetic data generation method, we teach neural IR to attend more uniformly and robustly to all entities in a given passage.
arXiv Detail & Related papers (2022-04-24T22:36:48Z) - TopNet: Learning from Neural Topic Model to Generate Long Stories [43.5564336855688]
Long story generation (LSG) is one of the coveted goals in natural language processing.
We propose emphTopNet to obtain high-quality skeleton words to complement the short input.
Our proposed framework is highly effective in skeleton word selection and significantly outperforms state-of-the-art models in both automatic evaluation and human evaluation.
arXiv Detail & Related papers (2021-12-14T09:47:53Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
Graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task.
Despite the success, their performance could be largely jeopardized in practice since they are unable to capture high-order interaction between words.
We propose a principled model -- hypergraph attention networks (HyperGAT) which can obtain more expressive power with less computational consumption for text representation learning.
arXiv Detail & Related papers (2020-11-01T00:21:59Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq abstractive summarization models generate text in a free-form manner.
We study the entropy, or uncertainty, of the model's token-level predictions.
We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
arXiv Detail & Related papers (2020-10-15T16:57:27Z) - Short Text Classification via Knowledge powered Attention with
Similarity Matrix based CNN [6.6723692875904375]
We propose a knowledge powered attention with similarity matrix based convolutional neural network (KASM) model.
We use knowledge graph (KG) to enrich the semantic representation of short text, specially, the information of parent-entity is introduced in our model.
For the purpose of measuring the importance of knowledge, we introduce the attention mechanisms to choose the important information.
arXiv Detail & Related papers (2020-02-09T12:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.