論文の概要: Minor Privacy Protection Through Real-time Video Processing at the Edge
- arxiv url: http://arxiv.org/abs/2005.01178v1
- Date: Sun, 3 May 2020 20:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 06:59:39.711377
- Title: Minor Privacy Protection Through Real-time Video Processing at the Edge
- Title(参考訳): エッジでのリアルタイムビデオ処理によるプライバシー保護
- Authors: Meng Yuan, Seyed Yahya Nikouei, Alem Fitwi, Yu Chen, Yunxi Dong
- Abstract要約: 本稿では,エッジ監視システムに手頃な軽量ソリューションについて検討する。
パイプラインは入力フレームから顔を取り出し、それぞれを大人または子供に分類する。
本稿では,他の顔認識による児童検出手法と比較して,分類精度92.1%のモデルが優れていることを示す。
- 参考スコア(独自算出の注目度): 4.4243708797335115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The collection of a lot of personal information about individuals, including
the minor members of a family, by closed-circuit television (CCTV) cameras
creates a lot of privacy concerns. Particularly, revealing children's
identifications or activities may compromise their well-being. In this paper,
we investigate lightweight solutions that are affordable to edge surveillance
systems, which is made feasible and accurate to identify minors such that
appropriate privacy-preserving measures can be applied accordingly. State of
the art deep learning architectures are modified and re-purposed in a cascaded
fashion to maximize the accuracy of our model. A pipeline extracts faces from
the input frames and classifies each one to be of an adult or a child. Over
20,000 labeled sample points are used for classification. We explore the timing
and resources needed for such a model to be used in the Edge-Fog architecture
at the edge of the network, where we can achieve near real-time performance on
the CPU. Quantitative experimental results show the superiority of our proposed
model with an accuracy of 92.1% in classification compared to some other face
recognition based child detection approaches.
- Abstract(参考訳): クローズド・サーキット・テレビ(CCTV)カメラによる、家族のマイナーなメンバーを含む個人に関する個人情報の収集は、多くのプライバシー上の懸念を生んでいる。
特に、子供の身元や活動を明らかにすることは、その幸福を損なう可能性がある。
本稿では,適切なプライバシー保護対策を適用できるように,未成年者を特定するために実現可能かつ精度の高いエッジ監視システムを実現するための軽量なソリューションについて検討する。
最先端のディープラーニングアーキテクチャは、我々のモデルの精度を最大化するために、カスケード方式で修正され、再利用される。
パイプラインは入力フレームから顔を取り出し、それぞれを大人または子供の顔に分類する。
2万以上のラベル付きサンプルポイントが分類に使用される。
ネットワークの端にあるEdge-Fogアーキテクチャで使用されるようなモデルに必要なタイミングとリソースについて検討し、CPU上でほぼリアルタイムのパフォーマンスを実現する。
定量的実験により,他の顔認証に基づく児童検出手法と比較して,分類精度92.1%のモデルが優れていることが示された。
関連論文リスト
- Deep Variational Privacy Funnel: General Modeling with Applications in
Face Recognition [3.351714665243138]
エンド・ツー・エンド・トレーニング・フレームワークを用いたプライバシー保護表現学習手法を開発した。
我々はこのモデルを最先端の顔認識システムに適用する。
論文 参考訳(メタデータ) (2024-01-26T11:32:53Z) - Individualized Deepfake Detection Exploiting Traces Due to Double
Neural-Network Operations [32.33331065408444]
既存のディープフェイク検出器は、画像が特定かつ識別可能な個人と関連付けられている場合、この検出タスクに最適化されない。
本研究では,個々の人物の顔画像のディープフェイク検出に焦点を当てた。
ニューラルネットワークのイデオロシティ特性を利用して検出性能を向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-13T10:21:00Z) - Privacy-Preserving Face Recognition Using Random Frequency Components [46.95003101593304]
顔認識によってプライバシーの懸念が高まっている。
人間の知覚可能な低周波成分を抽出することで視覚情報を隠蔽することを提案する。
得られた知見を,プライバシ保護のための新しい顔認識手法であるPartialFaceに抽出する。
論文 参考訳(メタデータ) (2023-08-21T04:31:02Z) - BabyNet: A Lightweight Network for Infant Reaching Action Recognition in
Unconstrained Environments to Support Future Pediatric Rehabilitation
Applications [5.4771139749266435]
動作認識は、ウェアラブルロボット外骨格のような物理的リハビリテーション装置の自律性を改善する重要な要素である。
本稿では,生体外静止カメラから幼児の到達行動を認識する軽量ネットワーク構造であるBabyNetを紹介する。
論文 参考訳(メタデータ) (2022-08-09T07:38:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
年齢推定に顔のセマンティクスを明示的に組み込む手法を提案する。
我々は,顔解析に基づくネットワークを設計し,異なるスケールで意味情報を学習する。
提案手法は,既存の年齢推定手法を常に上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-21T14:31:32Z) - Face Forensics in the Wild [121.23154918448618]
我々は、ffiw-10kと呼ばれる新しい大規模データセットを構築し、高品質の偽造ビデオ1万本を含む。
操作手順は完全自動で、ドメイン対逆品質評価ネットワークによって制御されます。
さらに,多人数顔偽造検出の課題に取り組むための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T05:06:19Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
偽造検知器の性能は、人間の目で見られる人工物の存在にどのように依存するかを示す。
前例のない品質の顔ビデオ偽造検出のための新しいベンチマークデータセットを導入する。
論文 参考訳(メタデータ) (2020-05-20T21:17:43Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。