論文の概要: Privacy-Preserving Face Recognition Using Random Frequency Components
- arxiv url: http://arxiv.org/abs/2308.10461v1
- Date: Mon, 21 Aug 2023 04:31:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 15:10:32.095101
- Title: Privacy-Preserving Face Recognition Using Random Frequency Components
- Title(参考訳): ランダム周波数成分を用いたプライバシー保護顔認証
- Authors: Yuxi Mi, Yuge Huang, Jiazhen Ji, Minyi Zhao, Jiaxiang Wu, Xingkun Xu,
Shouhong Ding, Shuigeng Zhou
- Abstract要約: 顔認識によってプライバシーの懸念が高まっている。
人間の知覚可能な低周波成分を抽出することで視覚情報を隠蔽することを提案する。
得られた知見を,プライバシ保護のための新しい顔認識手法であるPartialFaceに抽出する。
- 参考スコア(独自算出の注目度): 46.95003101593304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ubiquitous use of face recognition has sparked increasing privacy
concerns, as unauthorized access to sensitive face images could compromise the
information of individuals. This paper presents an in-depth study of the
privacy protection of face images' visual information and against recovery.
Drawing on the perceptual disparity between humans and models, we propose to
conceal visual information by pruning human-perceivable low-frequency
components. For impeding recovery, we first elucidate the seeming paradox
between reducing model-exploitable information and retaining high recognition
accuracy. Based on recent theoretical insights and our observation on model
attention, we propose a solution to the dilemma, by advocating for the training
and inference of recognition models on randomly selected frequency components.
We distill our findings into a novel privacy-preserving face recognition
method, PartialFace. Extensive experiments demonstrate that PartialFace
effectively balances privacy protection goals and recognition accuracy. Code is
available at: https://github.com/Tencent/TFace.
- Abstract(参考訳): 顔認識のユビキタスな利用はプライバシーの懸念を増し、機密性の高い顔画像への不正アクセスは個人の情報を侵害する可能性がある。
本稿では,顔画像の視覚情報のプライバシー保護と回復防止に関する詳細な研究について述べる。
本研究では,人間とモデルとの知覚の差に着目し,人間の知覚可能な低周波成分を刈り取ることにより視覚情報を隠蔽する手法を提案する。
回復を妨げるため,まず,モデル展開可能な情報の減少と高い認識精度の保持のパラドックスを解明した。
近年の理論的知見とモデル注意に関する考察に基づいて、ランダムに選択された周波数成分に対する認識モデルのトレーニングと推論を提唱し、ジレンマに対する解法を提案する。
我々はこの知見を,新たなプライバシー保護型顔認識法であるpartmentfaceに当てはめる。
大規模な実験では、PartialFaceはプライバシー保護目標と認識精度を効果的にバランスしている。
コードはhttps://github.com/tencent/tface.com/。
関連論文リスト
- Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
顔認識はプライバシーの懸念を増している。
本稿では,視覚障害と回復障害に対する顔画像保護について検討する。
我々は,この手法を新たなプライバシ保護顔認識手法であるMinusFaceに精錬する。
論文 参考訳(メタデータ) (2024-03-19T05:27:52Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
顔画像は、各ユーザのアイデンティティ情報に関連付けられた、敏感なバイオメトリック属性である。
本稿では,顔認識の入力次元を低減するために,ハイブリッド周波数-カラー融合法を提案する。
1:Nの検証シナリオの最先端よりも約2.6%から4.2%高い精度を持つ。
論文 参考訳(メタデータ) (2024-01-24T11:27:32Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Face Encryption via Frequency-Restricted Identity-Agnostic Attacks [25.198662208981467]
悪意あるコレクターは、生体情報を簡単に盗むためにディープフェイス認識システムを使用します。
非許可の顔認識から顔画像を暗号化するための周波数制限ID非依存(FRIA)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-11T07:38:46Z) - Enhancing Mobile Privacy and Security: A Face Skin Patch-Based
Anti-Spoofing Approach [0.0]
顔認識システム(FAS)は,顔認識システムのセキュリティを高めるために重要なコンポーネントである。
従来のFASは、スプーフィングトレースを検出するために、識別情報を含む画像を使用していたが、これらの画像の送信と保存中にプライバシー漏洩のリスクがある。
そこで本研究では,純粋な顔皮膚パッチ画像を入力として利用した顔皮膚パッチに基づく顔用アンチスプーフィングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-09T08:36:13Z) - DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel
Splitting in the Frequency Domain [23.4606547767188]
DuetFaceは、周波数領域における協調推論を利用するプライバシー保護の顔認識手法である。
提案手法は、保護されていないArcFaceと同等の認識精度とコストを達成し、最先端のプライバシ保存手法より優れている。
論文 参考訳(メタデータ) (2022-07-15T08:35:44Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
本稿では,周波数領域における差分プライバシーを用いたプライバシ保護顔認証手法を提案する。
本手法はいくつかの古典的顔認証テストセットで非常によく機能する。
論文 参考訳(メタデータ) (2022-07-15T07:15:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
最新のオープンソースの顔認識システムであるArcFaceを、100万枚以上の散らばった画像を用いた大規模な顔識別実験で監査する。
モデルのトレーニングデータには79.71%、存在しない人には75.73%のランク1顔認証精度がある。
論文 参考訳(メタデータ) (2020-01-09T15:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。