Multivariate Time Series Forecasting with Transfer Entropy Graph
- URL: http://arxiv.org/abs/2005.01185v4
- Date: Tue, 14 Dec 2021 20:08:51 GMT
- Title: Multivariate Time Series Forecasting with Transfer Entropy Graph
- Authors: Ziheng Duan, Haoyan Xu, Yida Huang, Jie Feng, Yueyang Wang
- Abstract summary: We propose a novel end-to-end deep learning model, termed graph neural network with Neural Granger Causality (CauGNN)
Each variable is regarded as a graph node, and each edge represents the casual relationship between variables.
Three benchmark datasets from the real world are used to evaluate the proposed CauGNN.
- Score: 5.179058210068871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series (MTS) forecasting is an essential problem in many
fields. Accurate forecasting results can effectively help decision-making. To
date, many MTS forecasting methods have been proposed and widely applied.
However, these methods assume that the predicted value of a single variable is
affected by all other variables, which ignores the causal relationship among
variables. To address the above issue, we propose a novel end-to-end deep
learning model, termed graph neural network with Neural Granger Causality
(CauGNN) in this paper. To characterize the causal information among variables,
we introduce the Neural Granger Causality graph in our model. Each variable is
regarded as a graph node, and each edge represents the casual relationship
between variables. In addition, convolutional neural network (CNN) filters with
different perception scales are used for time series feature extraction, which
is used to generate the feature of each node. Finally, Graph Neural Network
(GNN) is adopted to tackle the forecasting problem of graph structure generated
by MTS. Three benchmark datasets from the real world are used to evaluate the
proposed CauGNN. The comprehensive experiments show that the proposed method
achieves state-of-the-art results in the MTS forecasting task.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Stochastic Graph Recurrent Neural Network [6.656993023468793]
We propose SGRNN, a novel neural architecture that applies latent variables to simultaneously capture evolution in node attributes and topology.
Specifically, deterministic states are separated from states in the iterative process to suppress mutual interference.
Experiments on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-09-01T16:14:30Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.