論文の概要: LIMEtree: Interactively Customisable Explanations Based on Local
Surrogate Multi-output Regression Trees
- arxiv url: http://arxiv.org/abs/2005.01427v1
- Date: Mon, 4 May 2020 12:31:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 23:54:04.225769
- Title: LIMEtree: Interactively Customisable Explanations Based on Local
Surrogate Multi-output Regression Trees
- Title(参考訳): LIMEtree: ローカルサロゲート多出力回帰木に基づくインタラクティブなカスタマイズ可能な説明
- Authors: Kacper Sokol and Peter Flach
- Abstract要約: LIMEtree と呼ばれるブラックボックス予測のためのモデル非依存的かつポストホックな局所的説明可能性手法を提案する。
画像中の物体検出を訓練したディープニューラルネットワーク上でアルゴリズムを検証し,LIME(Local Interpretable Model-Agnostic Explanations)と比較する。
本手法は局所的忠実度保証を伴い,多種多様な説明型を生成する。
- 参考スコア(独自算出の注目度): 21.58324172085553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Systems based on artificial intelligence and machine learning models should
be transparent, in the sense of being capable of explaining their decisions to
gain humans' approval and trust. While there are a number of explainability
techniques that can be used to this end, many of them are only capable of
outputting a single one-size-fits-all explanation that simply cannot address
all of the explainees' diverse needs. In this work we introduce a
model-agnostic and post-hoc local explainability technique for black-box
predictions called LIMEtree, which employs surrogate multi-output regression
trees. We validate our algorithm on a deep neural network trained for object
detection in images and compare it against Local Interpretable Model-agnostic
Explanations (LIME). Our method comes with local fidelity guarantees and can
produce a range of diverse explanation types, including contrastive and
counterfactual explanations praised in the literature. Some of these
explanations can be interactively personalised to create bespoke, meaningful
and actionable insights into the model's behaviour. While other methods may
give an illusion of customisability by wrapping, otherwise static, explanations
in an interactive interface, our explanations are truly interactive, in the
sense of allowing the user to "interrogate" a black-box model. LIMEtree can
therefore produce consistent explanations on which an interactive exploratory
process can be built.
- Abstract(参考訳): 人工知能と機械学習モデルに基づくシステムは、人間の承認と信頼を得るための意思決定を説明できるという意味で透明であるべきである。
この目的のために使用できる説明可能性技術はいくつかあるが、それらの多くは、説明者の多様なニーズすべてに単純に対処できない単一の1サイズの説明を出力できるだけである。
本研究では,マルチアウトプット回帰木を用いた,ブラックボックス予測のためのモデル非依存・ポストホック局所説明可能性手法(LIMEtree)を提案する。
画像中の物体検出のために訓練されたディープニューラルネットワーク上でアルゴリズムを検証し,LIME(Local Interpretable Model-Agnostic Explanations)と比較した。
本手法は局所的忠実度保証を伴い,文献で賞賛される対比的・反事実的説明を含む多様な説明タイプを作成できる。
これらの説明のいくつかは、対話的にパーソナライズされ、モデルの振る舞いに関する、目覚ましい、有意義で実行可能な洞察を生み出すことができる。
他の方法はインタラクティブインターフェースで静的な説明をラップすることでカスタマイズ可能性の錯覚を与えるかもしれませんが、私たちの説明は、ユーザがブラックボックスモデルを"インターロゲート"できるという意味で、本当にインタラクティブです。
したがって、limetreeはインタラクティブな探索プロセスを構築するための一貫した説明を生み出すことができる。
関連論文リスト
- Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
畳み込みニューラルネットワーク(CNN)の忠実かつ解釈可能な説明に階層的セグメンテーション技術を用いるフレームワークを導入する。
本手法はモデルの推論忠実性を維持するモデルに基づく階層的セグメンテーションを構築する。
実験により、我々のフレームワークであるxAiTreesが高度に解釈可能で忠実なモデル説明を提供することが示された。
論文 参考訳(メタデータ) (2024-06-19T06:45:19Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
本稿では,自動解釈可能性評価のためのベンチマークスイートであるFIND(Function Interpretation and Description)を紹介する。
FINDには、トレーニングされたニューラルネットワークのコンポーネントに似た機能と、私たちが生成しようとしている種類の記述が含まれています。
本研究では、事前訓練された言語モデルを用いて、自然言語とコードにおける関数の振る舞いの記述を生成する手法を評価する。
論文 参考訳(メタデータ) (2023-09-07T17:47:26Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
本稿では、概念に基づく説明書から抽出した概念に基づいて決定木を訓練することで、畳み込みニューラルネットワーク(CNN)モデルの解釈可能性を高めることができるかどうかを評価する。
論文 参考訳(メタデータ) (2022-11-19T21:42:55Z) - ELUDE: Generating interpretable explanations via a decomposition into
labelled and unlabelled features [23.384134043048807]
モデルの予測を2つの部分に分解する説明フレームワークを開発する。
後者を識別することで、モデルの"説明できない"部分を分析することができます。
また,同機能領域で訓練された複数のモデルに対して,非競合機能セットが一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-06-15T17:36:55Z) - Learning to Scaffold: Optimizing Model Explanations for Teaching [74.25464914078826]
我々は3つの自然言語処理とコンピュータビジョンタスクのモデルを訓練する。
筆者らは,本フレームワークで抽出した説明文を学習した学生が,従来の手法よりもはるかに効果的に教師をシミュレートできることを発見した。
論文 参考訳(メタデータ) (2022-04-22T16:43:39Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Explanation as a process: user-centric construction of multi-level and
multi-modal explanations [0.34410212782758043]
本稿では,マルチレベルとマルチモーダルな説明を組み合わせたプロセスベースアプローチを提案する。
私たちは、解釈可能な機械学習アプローチであるインダクティブロジックプログラミングを使用して、理解可能なモデルを学びます。
論文 参考訳(メタデータ) (2021-10-07T19:26:21Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Generating Hierarchical Explanations on Text Classification via Feature
Interaction Detection [21.02924712220406]
特徴的相互作用を検出することによって階層的な説明を構築する。
このような説明は、単語とフレーズが階層の異なるレベルでどのように結合されるかを視覚化する。
実験は、モデルに忠実であり、人間に解釈可能な説明を提供する上で、提案手法の有効性を示す。
論文 参考訳(メタデータ) (2020-04-04T20:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。