Neuromorphic AI Empowered Root Cause Analysis of Faults in Emerging
Networks
- URL: http://arxiv.org/abs/2005.01472v1
- Date: Mon, 4 May 2020 13:26:56 GMT
- Title: Neuromorphic AI Empowered Root Cause Analysis of Faults in Emerging
Networks
- Authors: Shruti Bothe, Usama Masood, Hasan Farooq, Ali Imran
- Abstract summary: We propose an AI-based fault diagnosis solution that offers a key step towards a completely automated self-healing system.
We compare the performance of the proposed solution against state-of-the-art solution in literature.
Results show that neuromorphic computing model achieves high classification accuracy as compared to the other models.
- Score: 3.710841042000923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile cellular network operators spend nearly a quarter of their revenue on
network maintenance and management. A significant portion of that budget is
spent on resolving faults diagnosed in the system that disrupt or degrade
cellular services. Historically, the operations to detect, diagnose and resolve
issues were carried out by human experts. However, with diversifying cell
types, increased complexity and growing cell density, this methodology is
becoming less viable, both technically and financially. To cope with this
problem, in recent years, research on self-healing solutions has gained
significant momentum. One of the most desirable features of the self-healing
paradigm is automated fault diagnosis. While several fault detection and
diagnosis machine learning models have been proposed recently, these schemes
have one common tenancy of relying on human expert contribution for fault
diagnosis and prediction in one way or another. In this paper, we propose an
AI-based fault diagnosis solution that offers a key step towards a completely
automated self-healing system without requiring human expert input. The
proposed solution leverages Random Forests classifier, Convolutional Neural
Network and neuromorphic based deep learning model which uses RSRP map images
of faults generated. We compare the performance of the proposed solution
against state-of-the-art solution in literature that mostly use Naive Bayes
models, while considering seven different fault types. Results show that
neuromorphic computing model achieves high classification accuracy as compared
to the other models even with relatively small training data
Related papers
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - A Reusable AI-Enabled Defect Detection System for Railway Using
Ensembled CNN [5.381374943525773]
Defect detection is crucial for ensuring the trustworthiness of railway systems.
Current approaches rely on single deep-learning models, like CNNs.
We propose a reusable AI-enabled defect detection approach.
arXiv Detail & Related papers (2023-11-24T19:45:55Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - Personalized Federated Learning for Multi-task Fault Diagnosis of
Rotating Machinery [6.442377498489894]
This paper proposes a personalized federated learning framework, enabling multi-task fault diagnosis method across multiple factories.
A multi-task deep learning model based on convolutional neural network is constructed to diagnose the faults of machinery with heterogeneous information fusion.
The case study on collected data from real machines verifies the effectiveness of the proposed framework.
arXiv Detail & Related papers (2022-11-17T08:28:25Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical
Systems [0.8379286663107844]
This paper proposes a scalable algorithm for an automated learning of a structured diagnosis model.
It offers equal performance to comparable algorithms while giving better interpretability.
arXiv Detail & Related papers (2021-04-02T11:14:05Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Residual Generation Using Physically-Based Grey-Box Recurrent Neural
Networks For Engine Fault Diagnosis [1.0152838128195467]
Hybrid fault diagnosis methods combining physically-based models and available training data have shown promising results.
An automated residual design is developed using a bipartite graph representation of the system model to design grey-box recurrent neural networks.
Data from an internal combustion engine test bench is used to illustrate the potentials of combining machine learning and model-based fault diagnosis techniques.
arXiv Detail & Related papers (2020-08-11T11:59:48Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.