Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical
Systems
- URL: http://arxiv.org/abs/2104.00987v1
- Date: Fri, 2 Apr 2021 11:14:05 GMT
- Title: Bayesian Structural Learning for an Improved Diagnosis of Cyber-Physical
Systems
- Authors: Nicolas Olivain, Philipp Tiefenbacher and Jens Kohl
- Abstract summary: This paper proposes a scalable algorithm for an automated learning of a structured diagnosis model.
It offers equal performance to comparable algorithms while giving better interpretability.
- Score: 0.8379286663107844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diagnosis of cyber-physical systems (CPS) is based on a representation of
functional and faulty behaviour which is combined with system observations
taken at runtime to detect faulty behaviour and reason for its root cause. In
this paper we propose a scalable algorithm for an automated learning of a
structured diagnosis model which -- although having a reduced size -- offers
equal performance to comparable algorithms while giving better
interpretability. This allows tackling challenges of diagnosing CPS:
automatically learning a diagnosis model even with hugely imbalanced data,
reducing the state-explosion problem when searching for a root cause, and an
easy interpretability of the results. Our approach differs from existing
methods in two aspects: firstly, we aim to learn a holistic global
representation which is then transformed to a smaller, label-specific
representation. Secondly, we focus on providing a highly interpretable model
for an easy verification of the model and to facilitate repairs. We evaluated
our approach on data sets relevant for our problem domain. The evaluation shows
that the algorithm overcomes the mentioned problems while returning a
comparable performance.
Related papers
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - An Explainable Artificial Intelligence Approach for Unsupervised Fault
Detection and Diagnosis in Rotating Machinery [2.055054374525828]
This paper proposes a new approach for fault detection and diagnosis in rotating machinery.
The methodology consists of three parts: feature extraction, fault detection and fault diagnosis.
The effectiveness of the proposed approach is shown on three datasets containing different mechanical faults.
arXiv Detail & Related papers (2021-02-23T18:28:18Z) - Accelerating Recursive Partition-Based Causal Structure Learning [4.357523892518871]
Recursive causal discovery algorithms provide good results by using Conditional Independent (CI) tests in smaller sub-problems.
This paper proposes a generic causal structure refinement strategy that can locate the undesired relations with a small number of CI-tests.
We then empirically evaluate its performance against the state-of-the-art algorithms in terms of solution quality and completion time in synthetic and real datasets.
arXiv Detail & Related papers (2021-02-23T08:28:55Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - FIT: a Fast and Accurate Framework for Solving Medical Inquiring and
Diagnosing Tasks [10.687562550605739]
Self-diagnosis provides low-cost and accessible healthcare via an agent that queries the patient and makes predictions about possible diseases.
We propose a competitive framework, called FIT, which uses an information-theoretic reward to determine what data to collect next.
Our results in two simulated datasets show that FIT can effectively deal with large search space problems, outperforming existing baselines.
arXiv Detail & Related papers (2020-12-02T10:12:49Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z) - Implicit supervision for fault detection and segmentation of emerging
fault types with Deep Variational Autoencoders [1.160208922584163]
We propose a variational autoencoder (VAE) with labeled and unlabeled samples while inducing implicit supervision on the latent representation of the healthy conditions.
This creates a compact and informative latent representation that allows good detection and segmentation of unseen fault types.
In an extensive comparison, we demonstrate that the proposed method outperforms other learning strategies.
arXiv Detail & Related papers (2019-12-28T18:40:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.