論文の概要: Learning Geo-Contextual Embeddings for Commuting Flow Prediction
- arxiv url: http://arxiv.org/abs/2005.01690v1
- Date: Mon, 4 May 2020 17:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 01:49:52.238412
- Title: Learning Geo-Contextual Embeddings for Commuting Flow Prediction
- Title(参考訳): 通勤流予測のための地理コンテキスト埋め込みの学習
- Authors: Zhicheng Liu, Fabio Miranda, Weiting Xiong, Junyan Yang, Qiao Wang,
Claudio T. Silva
- Abstract要約: インフラ・土地利用情報に基づく通勤フローの予測は都市計画・公共政策開発に不可欠である。
重力モデルのような従来のモデルは、主に物理原理から派生し、現実のシナリオにおける予測力によって制限される。
本研究では,空間的相関を空間的コンテキスト情報から捉えて,通勤フロー予測を行うモデルであるGeo-contextual Multitask Embedding Learner (GMEL)を提案する。
- 参考スコア(独自算出の注目度): 20.600183945696863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting commuting flows based on infrastructure and land-use information
is critical for urban planning and public policy development. However, it is a
challenging task given the complex patterns of commuting flows. Conventional
models, such as gravity model, are mainly derived from physics principles and
limited by their predictive power in real-world scenarios where many factors
need to be considered. Meanwhile, most existing machine learning-based methods
ignore the spatial correlations and fail to model the influence of nearby
regions. To address these issues, we propose Geo-contextual Multitask Embedding
Learner (GMEL), a model that captures the spatial correlations from geographic
contextual information for commuting flow prediction. Specifically, we first
construct a geo-adjacency network containing the geographic contextual
information. Then, an attention mechanism is proposed based on the framework of
graph attention network (GAT) to capture the spatial correlations and encode
geographic contextual information to embedding space. Two separate GATs are
used to model supply and demand characteristics. A multitask learning framework
is used to introduce stronger restrictions and enhance the effectiveness of the
embedding representation. Finally, a gradient boosting machine is trained based
on the learned embeddings to predict commuting flows. We evaluate our model
using real-world datasets from New York City and the experimental results
demonstrate the effectiveness of our proposal against the state of the art.
- Abstract(参考訳): インフラ・土地利用情報に基づく通勤フローの予測は都市計画・公共政策開発に不可欠である。
しかし、通勤流の複雑なパターンを考えると、これは難しい課題である。
重力モデルのような従来のモデルは、主に物理原理から派生し、多くの要因を考慮すべき実世界のシナリオにおける予測力によって制限される。
一方、既存の機械学習ベースの手法のほとんどは、空間相関を無視し、近隣領域の影響をモデル化しない。
これらの問題に対処するために,空間的相関を空間的文脈情報から捉え,移動フローを予測するモデルであるGeo-contextual Multitask Embedding Learner (GMEL)を提案する。
具体的には,まず,地理的文脈情報を含むジオアジャクシーネットワークを構築する。
次に,グラフアテンションネットワーク(gat)の枠組みに基づき,空間相関を捉え,地理コンテキスト情報を埋め込み空間にエンコードするアテンション機構を提案する。
供給特性と需要特性をモデル化するために2つの別々のGATが使用される。
マルチタスク学習フレームワークは、より強い制約を導入し、埋め込み表現の有効性を高めるために使用される。
最後に、学習した埋め込みに基づいて勾配促進機を訓練し、通勤流を予測する。
我々は,ニューヨーク市の実世界のデータセットを用いてモデルを評価し,提案手法の有効性を実験的に実証した。
関連論文リスト
- Enhancing Traffic Prediction with Textual Data Using Large Language Models [0.0]
本研究では,地域レベルとノードレベルの2つのシナリオについて検討した。
地域レベルのシナリオでは、テキスト情報はネットワーク全体に接続されたノードとして表現される。
ノードレベルのシナリオでは、大きなモデルからの埋め込みは、対応するノードにのみ接続された追加ノードを表す。
提案手法は,New York Bike データセットによる予測精度の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-05-10T03:14:26Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
場所間の時間的関係を見つけることは、動的なオフライン広告やスマートな公共交通計画など、多くの都市アプリケーションに役立つ。
空間的に進化するグラフニューラルネットワーク(SEENet)を含むグラフ学習方式によるTrialの解を提案する。
SEConvは時間内アグリゲーションと時間間伝搬を実行し、位置メッセージパッシングの観点から、多面的に空間的に進化するコンテキストをキャプチャする。
SE-SSLは、位置表現学習を強化し、関係の空間性をさらに扱えるように、グローバルな方法でタイムアウェアな自己教師型学習タスクを設計する。
論文 参考訳(メタデータ) (2023-06-15T07:48:32Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
地理的ロバスト性の問題について検討し、3つの主要な貢献を行う。
まず,地理的適応のための大規模データセットGeoNetを紹介する。
第2に、シーンコンテキストにおける大きな変化から、ドメインシフトの主な原因が生じるという仮説を立てる。
第3に、最先端の教師なしドメイン適応アルゴリズムとアーキテクチャを広範囲に評価する。
論文 参考訳(メタデータ) (2023-03-27T17:59:34Z) - Semantic-Fused Multi-Granularity Cross-City Traffic Prediction [17.020546413647708]
本研究では,異なる粒度で融合した意味を持つ都市間における知識伝達を実現するためのセマンティック・フューズド・マルチグラニュラリティ・トランスファー・ラーニング・モデルを提案する。
本稿では,静的な空間依存を保ちながら,様々な意味を融合する意味融合モジュールを設計する。
STLモデルの有効性を検証するため、6つの実世界のデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-23T04:26:34Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation [8.398623478484248]
知的交通システム(ITS)時代における交通管理・交通シミュレーションにおける原位置推定の役割
これまでのモデルベースのモデルは、未決定の課題に直面しており、追加の仮定と追加のデータに対する必死な需要が存在する。
本稿では,2層アテンション機構を備えた新しいグラフマッチング手法であるC-GAMEを提案する。
論文 参考訳(メタデータ) (2021-11-26T08:57:21Z) - KST-GCN: A Knowledge-Driven Spatial-Temporal Graph Convolutional Network
for Traffic Forecasting [8.490904938246347]
本研究では,時空間グラフ畳み込みネットワークに基づく知識表現型交通予測手法を提案する。
まず,交通予測のための知識グラフを構築し,KR-EARという知識表現学習手法を用いて知識表現を導出する。
そこで我々は,空間時間グラフ畳み込みバックボーンネットワークの入力として,知識とトラフィックの特徴を組み合わせた知識融合セル(KF-Cell)を提案する。
論文 参考訳(メタデータ) (2020-11-26T14:15:52Z) - Spatial-Temporal Dynamic Graph Attention Networks for Ride-hailing
Demand Prediction [3.084885761077852]
ライドシェアの需要予測は、リソースの事前配置、車の利用率の向上、ユーザエクスペリエンス向上に役立つ。
既存の配車需要予測手法は、近隣地域でのみ同様の重要性を割り当てている。
本研究では,新しい配車需要予測手法である空間時間動的グラフ注意ネットワーク(STDGAT)を提案する。
論文 参考訳(メタデータ) (2020-06-07T13:00:19Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
本研究では,複雑なライダーシップパターンをテーラー設計グラフから効果的に学習できる物理仮想協調グラフネットワーク(PVCGN)を提案する。
特に、物理グラフは、研究されたメトロシステムの現実的なトポロジーに基づいて直接構築される。
類似度グラフと相関グラフを仮想トポロジで構築し, 駅間交通流の類似度と相関関係を導出する。
論文 参考訳(メタデータ) (2020-01-14T16:47:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。