論文の概要: Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation
- arxiv url: http://arxiv.org/abs/2111.14625v1
- Date: Fri, 26 Nov 2021 08:57:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 15:17:04.809253
- Title: Cyclic Graph Attentive Match Encoder (CGAME): A Novel Neural Network For
OD Estimation
- Title(参考訳): Cyclic Graph Attentive Match Encoder (CGAME): OD推定のための新しいニューラルネットワーク
- Authors: Guanzhou Li, Yujing He, Jianping Wu
- Abstract要約: 知的交通システム(ITS)時代における交通管理・交通シミュレーションにおける原位置推定の役割
これまでのモデルベースのモデルは、未決定の課題に直面しており、追加の仮定と追加のデータに対する必死な需要が存在する。
本稿では,2層アテンション機構を備えた新しいグラフマッチング手法であるC-GAMEを提案する。
- 参考スコア(独自算出の注目度): 8.398623478484248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Origin-Destination Estimation plays an important role in traffic management
and traffic simulation in the era of Intelligent Transportation System (ITS).
Nevertheless, previous model-based models face the under-determined challenge,
thus desperate demand for additional assumptions and extra data exists. Deep
learning provides an ideal data-based method for connecting inputs and results
by probabilistic distribution transformation. While relevant researches of
applying deep learning into OD estimation are limited due to the challenges
lying in data transformation across representation space, especially from
dynamic spatial-temporal space to heterogeneous graph in this issue. To address
it, we propose Cyclic Graph Attentive Matching Encoder (C-GAME) based on a
novel Graph Matcher with double-layer attention mechanism. It realizes
effective information exchange in underlying feature space and establishes
coupling relationship across spaces. The proposed model achieves
state-of-the-art results in experiments, and offers a novel framework for
inference task across spaces in prospective employments.
- Abstract(参考訳): 知的交通システム(ITS)時代における交通管理と交通シミュレーションにおいて,原位置推定が重要な役割を担っている。
それにもかかわらず、以前のモデルベースのモデルは未決定の課題に直面しており、追加の仮定と余分なデータに対する必死の要求が存在する。
ディープラーニングは、確率分布変換による入力と結果を接続するための理想的なデータベース手法を提供する。
OD推定へのディープラーニングの適用に関する関連する研究は、特に動的空間時間空間から不均一グラフへの表現空間を越えたデータ変換における課題のために限られている。
そこで本研究では,2層アテンション機構を備えた新しいグラフマッチング方式であるC-GAME(Cyclic Graph Attentive Matching Encoder)を提案する。
基礎となる特徴空間における効果的な情報交換を実現し、空間間の結合関係を確立する。
提案モデルは実験で最先端の成果を達成し,将来的な雇用において空間横断的なタスクを推論するための新しい枠組みを提供する。
関連論文リスト
- Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
都市センシングの分野では,交通分析,人体移動評価,犯罪予測において,効果的な時間的予測の枠組みが重要な役割を担っている。
空間的および時間的データにデータノイズと空間性が存在することは、ロバスト表現を学習する上で、既存のニューラルネットワークモデルにとって大きな課題となる。
実効時間データ拡張のための新しい自己教師型学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-14T07:33:33Z) - Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
効率的な自己教師型学習を実現するための空間時空間グラフ学習モデル(GraphST)を提案する。
提案手法は, 重要な多視点自己教師情報の蒸留を自動化する, 対向的コントラスト学習パラダイムである。
実生活データセット上での様々な時空間予測タスクにおいて,提案手法の優位性を示す。
論文 参考訳(メタデータ) (2023-06-19T03:09:35Z) - Deep Graph Reprogramming [112.34663053130073]
グラフニューラルネットワーク(GNN)に適したタスク再利用モデル「ディープグラフ再プログラミング」
本稿では,モデル再プログラミングパラダイムと並行して,革新的なデータ再プログラミングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-28T02:04:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting [6.867331860819595]
複雑な時空間相関と非線形トラフィックパターンのため、交通予測は非常に困難である。
既存の研究は主に、空間的相関と時間的相関を別々に考慮して、そのような空間的・時間的依存関係をモデル化する。
本稿では,局所的マルチヘッド自己アテンションを用いた空間時間グラフ上での空間空間的・時間的相関を直接モデル化する。
論文 参考訳(メタデータ) (2022-07-09T19:21:00Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Representation Learning via Adversarially-Contrastive Optimal Transport [40.52344027750609]
我々はその問題をコントラスト表現学習の文脈に設定した。
本稿では,ワッサースタイン GAN と新しい分類器を結合するフレームワークを提案する。
我々の結果は、挑戦的なベースラインに対する競争力を示す。
論文 参考訳(メタデータ) (2020-07-11T19:46:18Z) - Spatial-Temporal Dynamic Graph Attention Networks for Ride-hailing
Demand Prediction [3.084885761077852]
ライドシェアの需要予測は、リソースの事前配置、車の利用率の向上、ユーザエクスペリエンス向上に役立つ。
既存の配車需要予測手法は、近隣地域でのみ同様の重要性を割り当てている。
本研究では,新しい配車需要予測手法である空間時間動的グラフ注意ネットワーク(STDGAT)を提案する。
論文 参考訳(メタデータ) (2020-06-07T13:00:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。