Data Augmentation for Hypernymy Detection
- URL: http://arxiv.org/abs/2005.01854v2
- Date: Thu, 21 Jan 2021 21:13:16 GMT
- Title: Data Augmentation for Hypernymy Detection
- Authors: Thomas Kober, Julie Weeds, Lorenzo Bertolini, David Weir
- Abstract summary: We develop two novel data augmentation techniques to generate new training examples from existing ones.
First, we combine the linguistic principles of hypernym transitivity and intersective modifier-noun composition to generate additional pairs of vectors.
Second, we use generative adversarial networks (GANs) to generate pairs of vectors for which the hypernymy relation can be assumed.
- Score: 4.616703548353372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automatic detection of hypernymy relationships represents a challenging
problem in NLP. The successful application of state-of-the-art supervised
approaches using distributed representations has generally been impeded by the
limited availability of high quality training data. We have developed two novel
data augmentation techniques which generate new training examples from existing
ones. First, we combine the linguistic principles of hypernym transitivity and
intersective modifier-noun composition to generate additional pairs of vectors,
such as "small dog - dog" or "small dog - animal", for which a hypernymy
relationship can be assumed. Second, we use generative adversarial networks
(GANs) to generate pairs of vectors for which the hypernymy relation can also
be assumed. We furthermore present two complementary strategies for extending
an existing dataset by leveraging linguistic resources such as WordNet. Using
an evaluation across 3 different datasets for hypernymy detection and 2
different vector spaces, we demonstrate that both of the proposed automatic
data augmentation and dataset extension strategies substantially improve
classifier performance.
Related papers
- Generative adversarial networks for data-scarce spectral applications [0.0]
We report on an application of GANs in the domain of synthetic spectral data generation.
We show that CWGANs can act as a surrogate model with improved performance in the low-data regime.
arXiv Detail & Related papers (2023-07-14T16:27:24Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
This paper presents a number of techniques for making models more robust in the domain of causal reasoning.
We show a statistically significant improvement on performance and on both datasets, even with only a small number of additionally generated data points.
arXiv Detail & Related papers (2021-01-13T09:55:29Z) - Lightweight Data Fusion with Conjugate Mappings [11.760099863897835]
We present an approach to data fusion that combines the interpretability of structured probabilistic graphical models with the flexibility of neural networks.
The proposed method, lightweight data fusion (LDF), emphasizes posterior analysis over latent variables using two types of information.
arXiv Detail & Related papers (2020-11-20T19:47:13Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.