Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor
- URL: http://arxiv.org/abs/2403.00938v1
- Date: Fri, 1 Mar 2024 19:35:54 GMT
- Title: Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor
- Authors: Hirsh Kamakari, Jiace Sun, Yaodong Li, Jonathan J. Thio, Tanvi P.
Gujarati, Matthew P. A. Fisher, Mario Motta, Austin J. Minnich
- Abstract summary: We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum systems subject to random unitary evolution and measurements at
random points in spacetime exhibit entanglement phase transitions which depend
on the frequency of these measurements. Past work has experimentally observed
entanglement phase transitions on near-term quantum computers, but the
characterization approach using entanglement entropy is not scalable due to
exponential overhead of quantum state tomography and post selection. Recently,
an alternative protocol to detect entanglement phase transitions using linear
cross-entropy was proposed which eliminates both bottlenecks. Here, we report
the demonstration of this protocol in systems with one-dimensional and
all-to-all connectivities on IBM's quantum hardware on up to 22 qubits, a
regime which is presently inaccessible if post-selection is required. We
demonstrate a collapse of the data into a scale-invariant form with critical
exponents agreeing with theory within uncertainty. Our demonstration paves the
way for studies of measurement-induced entanglement phase transitions and
associated critical phenomena on larger near-term quantum systems.
Related papers
- Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems [0.0]
We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
arXiv Detail & Related papers (2024-06-07T12:08:07Z) - Measurement-induced phase transitions by matrix product states scaling [0.0]
We study the time evolution of long quantum spin chains subjected to continuous monitoring via matrix product states (MPS) at fixed bond dimension.
We show that the error rate displays a phase transition in the monitoring strength, which can be well detected by scaling analysis with relatively low values of bond dimensions.
arXiv Detail & Related papers (2024-02-20T17:22:36Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Entanglement entropy scaling transition under competing monitoring
protocols [0.0]
We analyze the competition between two different dissipation channels arising from two incompatible continuous monitoring protocols.
By studying the trajectory of quantum trajectories associated with the continuous monitoring protocols, we present a transition for the scaling of the averaged entanglement entropies.
arXiv Detail & Related papers (2020-08-19T18:23:01Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
We show that the diffusion map method, which performs nonlinear dimensionality reduction and spectral clustering of the measurement data, has significant potential for learning complex phase transitions unsupervised.
This method works for measurements of local observables in a single basis and is thus readily applicable to many experimental quantum simulators.
arXiv Detail & Related papers (2020-03-16T18:40:13Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.