論文の概要: Reproduction of Lateral Inhibition-Inspired Convolutional Neural Network
for Visual Attention and Saliency Detection
- arxiv url: http://arxiv.org/abs/2005.02184v1
- Date: Tue, 5 May 2020 13:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 13:14:53.269425
- Title: Reproduction of Lateral Inhibition-Inspired Convolutional Neural Network
for Visual Attention and Saliency Detection
- Title(参考訳): 視覚注意と塩分検出のための側方抑制インスパイア畳み込みニューラルネットワークの再現
- Authors: Filip Marcinek
- Abstract要約: ニューラルネットワークは 自然画像の例と 効果的に混同されます
対象の分類は,対象が位置する背景画素の影響を強く受けているのではないかと思う。
この目的のために,licNNネットワークが作成した有能度マップを用いて,上記の問題を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural networks have continued to flourish, achieving high
efficiency in detecting relevant objects in photos or simply recognizing
(classifying) these objects - mainly using CNN networks. Current solutions,
however, are far from ideal, because it often turns out that network can be
effectively confused with even natural images examples. I suspect that the
classification of an object is strongly influenced by the background pixels on
which the object is located. In my work, I analyze the above problem using for
this purpose saliency maps created by the LICNN network. They are designed to
suppress the neurons surrounding the examined object and, consequently, reduce
the contribution of background pixels to the classifier predictions. My
experiments on the natural and adversarial images datasets show that, indeed,
there is a visible correlation between the background and the wrong-classified
foreground object. This behavior of the network is not supported by human
experience, because, for example, we do not confuse the yellow school bus with
the snow plow just because it is on the snowy background.
- Abstract(参考訳): 近年、ニューラルネットワークは繁栄を続けており、写真中の関連オブジェクトの検出や、CNNネットワークを中心に、これらのオブジェクトの認識(分類)に高い効率を実現している。
しかし、現在のソリューションは理想的ではない。なぜなら、ネットワークは自然画像の例でさえも効果的に混同できるからだ。
対象の分類は,対象が位置する背景画素の影響を強く受けているのではないかと思う。
私の研究では、licNNネットワークによって作成されたこの目的の従順性マップを用いて、上記の問題を解析します。
対象物を取り巻くニューロンを抑えるために設計されており、その結果、分類器の予測に対する背景画素の寄与を減少させる。
自然画像と逆画像のデータセットに関する私の実験では、背景と間違った分類された前景オブジェクトの間には目に見える相関関係があることが示されています。
このネットワークの挙動は、例えば、雪の背景にあるからといって、黄色いスクールバスと雪のプローを混同しないため、人間の経験に支えられていない。
関連論文リスト
- Visual Context-Aware Person Fall Detection [52.49277799455569]
画像中の個人とオブジェクトを半自動分離するセグメンテーションパイプラインを提案する。
ベッド、椅子、車椅子などの背景オブジェクトは、転倒検知システムに挑戦し、誤ったポジティブアラームを引き起こす。
トレーニング中のオブジェクト固有のコンテキスト変換が、この課題を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2024-04-11T19:06:36Z) - Understanding the Role of Pathways in a Deep Neural Network [4.456675543894722]
分類タスクで訓練された畳み込みニューラルネットワーク(CNN)を分析し,個々の画素の拡散経路を抽出するアルゴリズムを提案する。
画像からの個々のピクセルの最も大きな経路は、分類に重要な各層の特徴マップを横断する傾向にある。
論文 参考訳(メタデータ) (2024-02-28T07:53:19Z) - Why do CNNs excel at feature extraction? A mathematical explanation [53.807657273043446]
実世界のデータセットに似た画像を生成するのに使用できる特徴抽出に基づく画像分類の新しいモデルを提案する。
本研究では,特徴の存在を検知する一方向線形関数を構築し,畳み込みネットワークで実現可能であることを示す。
論文 参考訳(メタデータ) (2023-07-03T10:41:34Z) - Background Invariant Classification on Infrared Imagery by Data
Efficient Training and Reducing Bias in CNNs [1.2891210250935146]
畳み込みニューラルネットワークは 画像中の物体を 正確に分類できます
ネットワークの注意が常にシーンのセマンティックな重要な領域にあるとは限らないことはよく知られている。
我々は、赤外線画像とRGBデータの両方におけるCNNのバイアスを低減するために、textitsplit trainingと呼ばれる2段階のトレーニング手順を提案する。
論文 参考訳(メタデータ) (2022-01-22T23:29:42Z) - Learning to Detect Every Thing in an Open World [139.78830329914135]
我々は、Learning to Detect Every Thing (LDET)と呼ぶ、シンプルながら驚くほど強力なデータ拡張とトレーニングスキームを提案する。
可視だがラベル付けされていない背景オブジェクトの隠蔽を避けるため、元の画像の小さな領域から採取した背景画像上に注釈付きオブジェクトを貼り付ける。
LDETは、オープンワールドのインスタンスセグメンテーションタスクにおいて、多くのデータセットに大きな改善をもたらす。
論文 参考訳(メタデータ) (2021-12-03T03:56:06Z) - Anabranch Network for Camouflaged Object Segmentation [23.956327305907585]
本稿では,キャモフラージュ対象分割問題,すなわち所定の画像に対するキャモフラーグ対象分割問題について検討する。
この問題に対処するため,我々は,ベンチマーク目的のカモフラージュされたオブジェクトの画像データセットを新たに提供した。
さらに,分類タスクとセグメント化タスクの両方を活用する,Anabranch Networkと呼ばれる汎用的なエンドツーエンドネットワークを提案する。
論文 参考訳(メタデータ) (2021-05-20T01:52:44Z) - Structure-Preserving Progressive Low-rank Image Completion for Defending
Adversarial Attacks [20.700098449823024]
ディープニューラルネットワークは、局所的な画像の詳細を分析し、推論層に沿って情報を要約することでオブジェクトを認識し、最終的な決定を導出する。
入力画像の小さな洗練されたノイズは、ネットワーク推測経路に沿って蓄積し、ネットワーク出力で間違った決定を下すことができる。
人間の目は、ローカルイメージテクスチャではなく、グローバルな構造とセマンティックなキューに基づいてオブジェクトを認識します。
論文 参考訳(メタデータ) (2021-03-04T01:24:15Z) - Improving Object Detection in Art Images Using Only Style Transfer [5.156484100374058]
アートイメージにおけるオブジェクト(特に人)のローカライズのためのニューラルネットワークのトレーニングプロセスを提案し,評価する。
AdaInスタイルの転送を使用してCOCOデータセットの画像を変更し、トレーニングと検証のための大規模なデータセットを生成します。
その結果、最先端の技術が大幅に改善され、ニューラルネットワークをトレーニングしてアート画像を処理するデータセットを作成するための新しい方法が前進しました。
論文 参考訳(メタデータ) (2021-02-12T13:48:46Z) - Assessing The Importance Of Colours For CNNs In Object Recognition [70.70151719764021]
畳み込みニューラルネットワーク(CNN)は相反する性質を示すことが示されている。
CNNが予測をしながら色情報に大きく依存していることを実証します。
congruent, greyscale, incongruent画像の合同画像で学習したモデルを評価する。
論文 参考訳(メタデータ) (2020-12-12T22:55:06Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - WW-Nets: Dual Neural Networks for Object Detection [48.67090730174743]
ネットワーク接続重みの暗黙的なオブジェクト位置知識を用いて、オブジェクト検出タスクにおける選択的注意を誘導する、新しいディープ畳み込みニューラルネットワークフレームワークを提案する。
我々のアプローチはWhat-Where Nets (WW-Nets)と呼ばれ、人間の視覚経路の構造にインスパイアされている。
論文 参考訳(メタデータ) (2020-05-15T21:16:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。