論文の概要: Improving Object Detection in Art Images Using Only Style Transfer
- arxiv url: http://arxiv.org/abs/2102.06529v1
- Date: Fri, 12 Feb 2021 13:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-15 23:36:47.615222
- Title: Improving Object Detection in Art Images Using Only Style Transfer
- Title(参考訳): スタイル転送のみを用いたアート画像の物体検出の改善
- Authors: David Kadish, Sebastian Risi, Anders Sundnes L{\o}vlie
- Abstract要約: アートイメージにおけるオブジェクト(特に人)のローカライズのためのニューラルネットワークのトレーニングプロセスを提案し,評価する。
AdaInスタイルの転送を使用してCOCOデータセットの画像を変更し、トレーニングと検証のための大規模なデータセットを生成します。
その結果、最先端の技術が大幅に改善され、ニューラルネットワークをトレーニングしてアート画像を処理するデータセットを作成するための新しい方法が前進しました。
- 参考スコア(独自算出の注目度): 5.156484100374058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in object detection using deep learning neural
networks, these neural networks still struggle to identify objects in art
images such as paintings and drawings. This challenge is known as the cross
depiction problem and it stems in part from the tendency of neural networks to
prioritize identification of an object's texture over its shape. In this paper
we propose and evaluate a process for training neural networks to localize
objects - specifically people - in art images. We generate a large dataset for
training and validation by modifying the images in the COCO dataset using AdaIn
style transfer. This dataset is used to fine-tune a Faster R-CNN object
detection network, which is then tested on the existing People-Art testing
dataset. The result is a significant improvement on the state of the art and a
new way forward for creating datasets to train neural networks to process art
images.
- Abstract(参考訳): 近年のディープラーニングニューラルネットワークによる物体検出の進歩にもかかわらず、これらのニューラルネットワークは、絵画や図面などの美術画像中の物体の識別に苦慮している。
この課題はクロス描写問題として知られており、部分的には、物体のテクスチャの識別をその形状よりも優先するニューラルネットワークの傾向に起因している。
本稿では,物体(特に人)をアートイメージにローカライズするためのニューラルネットワークのトレーニングプロセスを提案し,評価する。
AdaInスタイルの転送を使用してCOCOデータセットの画像を変更し、トレーニングと検証のための大規模なデータセットを生成します。
このデータセットは、Faster R-CNNオブジェクト検出ネットワークを微調整するために使用され、既存のPeople-Artテストデータセットでテストされる。
その結果、最先端の技術が大幅に改善され、ニューラルネットワークをトレーニングしてアート画像を処理するデータセットを作成するための新しい方法が前進しました。
関連論文リスト
- Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models [49.3179290313959]
感情中心型生成的リプレイ (ECgr) は, 生成的対向ネットワークから合成画像を統合することで, この課題に対処する。
ECgrは、生成された画像の忠実性を保証するために品質保証アルゴリズムを組み込んでいる。
4つの多様な表情データセットに対する実験結果から,擬似リハーサル法により生成されたイメージを組み込むことで,ターゲットとするデータセットとソースデータセットのトレーニングが促進されることが示された。
論文 参考訳(メタデータ) (2024-04-18T15:28:34Z) - UAVs and Neural Networks for search and rescue missions [0.0]
無人航空機(UAV)が捉えた空中画像において,車,人,火などの興味の対象を検出する方法を提案する。
これを実現するために,ニューラルネットワークを用いて教師あり学習のためのデータセットを作成する。
論文 参考訳(メタデータ) (2023-10-09T08:27:35Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
生画像のスケーリングはアウト・オブ・ディストリビューションデータを生成するため、ネットワークを騙すための敵攻撃の可能性がある。
本研究では,ImageNet Challengeデータセットのサブセットを複数でスケーリングすることで,Scaling-DistortionデータセットのImageNet-CSを提案する。
論文 参考訳(メタデータ) (2022-09-02T08:06:58Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
この研究の目的は、一対のイメージから視覚的に類似したパターンを効率的に識別することである。
画像中のオブジェクトセグメントを選択し、それを別の画像にコピーペーストすることで、合成トレーニングペアを生成する。
提案手法は,Brueghelデータセット上でのアートワークの詳細検索に対して,明確な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-10-29T16:51:16Z) - An analysis of the transfer learning of convolutional neural networks
for artistic images [1.9336815376402716]
巨大な自然画像データセットからのトランスファー学習は、アート分析アプリケーションの中核となっている。
本稿ではまず,ネットワークの内部表現を可視化する手法を用いて,ネットワークが芸術的イメージで何を学んだかを理解するための手がかりを提供する。
特徴空間とパラメータ空間の両方のメトリクスと、最大アクティベーション画像のセットで計算されたメトリクスのおかげで、学習プロセスが導入した変化を定量的に分析する。
論文 参考訳(メタデータ) (2020-11-05T09:45:32Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Reinforcement Learning for Improving Object Detection [22.06211725256875]
我々は,事前学習ネットワークのオブジェクト検出性能を向上させるために,適用すべき特定の前処理量を選択するObjectRLというアルゴリズムを導入する。
ObjectRLの主な動機は、人間の目にとって良いように見える画像が、物体を検出するための訓練済みの物体検出器にとって、必ずしも最適であるとは限らないことである。
論文 参考訳(メタデータ) (2020-08-18T16:20:04Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z) - Learning Local Complex Features using Randomized Neural Networks for
Texture Analysis [0.1474723404975345]
テクスチャ解析のための学習手法と複雑ネットワーク(CN)理論を組み合わせた新しい手法を提案する。
この方法はCNの表現能力を利用してテクスチャイメージを有向ネットワークとしてモデル化する。
このニューラルネットワークは、単一の隠蔽層を持ち、高速学習アルゴリズムを使用して、テクスチャのキャラクタリゼーションのためにローカルなCNパターンを学習することができる。
論文 参考訳(メタデータ) (2020-07-10T23:18:01Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。