論文の概要: Hyper-parameter Tuning for the Contextual Bandit
- arxiv url: http://arxiv.org/abs/2005.02209v1
- Date: Mon, 4 May 2020 17:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 00:21:07.638893
- Title: Hyper-parameter Tuning for the Contextual Bandit
- Title(参考訳): コンテキスト帯域に対するハイパーパラメータチューニング
- Authors: Djallel Bouneffouf and Emmanuelle Claeys
- Abstract要約: 本稿では,線形報酬関数の設定によるコンテキスト的帯域問題における探索的エクスプロイトトレードオフの学習問題について検討する。
提案アルゴリズムは,観測された文脈に基づいて,適切な探索パラメータをオンラインで選択することを学ぶ。
ここでは,文脈的帯域幅アルゴリズムの最適探索を求めるために,帯域幅を用いた2つのアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 22.721128745617076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study here the problem of learning the exploration exploitation trade-off
in the contextual bandit problem with linear reward function setting. In the
traditional algorithms that solve the contextual bandit problem, the
exploration is a parameter that is tuned by the user. However, our proposed
algorithm learn to choose the right exploration parameters in an online manner
based on the observed context, and the immediate reward received for the chosen
action. We have presented here two algorithms that uses a bandit to find the
optimal exploration of the contextual bandit algorithm, which we hope is the
first step toward the automation of the multi-armed bandit algorithm.
- Abstract(参考訳): 本稿では,線形報酬関数を用いたコンテキストバンディット問題における探索的利用トレードオフの学習の問題について検討する。
文脈的帯域幅問題を解決する従来のアルゴリズムでは、探索はユーザが調整したパラメータである。
しかし,提案アルゴリズムは,観察された状況と,選択した行動に対する即時報酬に基づいて,適切な探索パラメータをオンラインで選択する。
本稿では,バンディットを用いてコンテキストバンディットアルゴリズムの最適探索を行う2つのアルゴリズムを提示し,マルチアーム付きバンディットアルゴリズムの自動化に向けた第一歩を期待する。
関連論文リスト
- Neural Dueling Bandits [58.90189511247936]
ニューラルネットワークを用いて、予め選択した腕の好みフィードバックを用いて報酬関数を推定する。
次に、理論結果を二項フィードバックによる文脈的帯域幅問題に拡張し、それはそれ自体は自明な寄与ではない。
論文 参考訳(メタデータ) (2024-07-24T09:23:22Z) - Multi-Player Approaches for Dueling Bandits [58.442742345319225]
Follow Your Leaderのブラックボックスアプローチの直接的な使用は、この設定の低いバウンダリと一致することを示す。
また,Condorcet-Winnerレコメンデーションプロトコルを用いて,メッセージパッシングによる完全分散アプローチも分析する。
論文 参考訳(メタデータ) (2024-05-25T10:25:48Z) - Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
FGTS.CDBという名前のトンプソンサンプリングアルゴリズムを提案する。
われわれのアルゴリズムの核心は、デュエルバンディットに適した新しいFeel-Good探索用語である。
我々のアルゴリズムは最小限の誤差、すなわち $tildemathcalO(dsqrt T)$, $d$ はモデル次元、$T$ は時間水平線である。
論文 参考訳(メタデータ) (2024-04-09T04:45:18Z) - Thompson Sampling with Virtual Helping Agents [0.0]
我々は、オンラインのシーケンシャルな意思決定の問題、すなわち、現在の知識を活用して即時パフォーマンスを最大化し、新しい情報を探索して長期的な利益を得るというトレードオフに対処する。
本稿では,マルチアームバンディット問題に対する2つのアルゴリズムを提案し,累積的後悔に関する理論的境界を提供する。
論文 参考訳(メタデータ) (2022-09-16T23:34:44Z) - Syndicated Bandits: A Framework for Auto Tuning Hyper-parameters in
Contextual Bandit Algorithms [74.55200180156906]
文脈的盗賊問題は、探索と搾取の間のトレードオフをモデル化する。
我々のSyndicated Banditsフレームワークは最適な後悔の上限を達成できることを示す。
論文 参考訳(メタデータ) (2021-06-05T22:30:21Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
バンディットアルゴリズムを結合する簡単な手法を提案する。
私たちのアプローチは、個々のbanditアルゴリズムのそれぞれを、より高いレベルのn$-armed bandit問題のアームとして扱う"meta-ucb"手順に基づいています。
論文 参考訳(メタデータ) (2020-12-24T05:36:29Z) - Corralling Stochastic Bandit Algorithms [54.10645564702416]
相関アルゴリズムの後悔は、最も報酬の高い腕を含む最高のアルゴリズムの後悔よりも悪くはないことを示す。
最高報酬と他の報酬の差は、最高報酬と他の報酬の差に依存することを示す。
論文 参考訳(メタデータ) (2020-06-16T15:33:12Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
報奨分布に歪んだ確率を持つ2つの多重武装バンディット問題を定式化する。
以上のような後悔の最小化の問題と、マルチアームバンディットのための最高の腕識別フレームワークについて考察する。
論文 参考訳(メタデータ) (2016-11-30T17:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。