Predicting atmospheric optical properties for radiative transfer
computations using neural networks
- URL: http://arxiv.org/abs/2005.02265v3
- Date: Sun, 16 Aug 2020 08:59:30 GMT
- Title: Predicting atmospheric optical properties for radiative transfer
computations using neural networks
- Authors: Menno A. Veerman, Robert Pincus, Robin Stoffer, Caspar van Leeuwen,
Damian Podareanu, Chiel C. van Heerwaarden
- Abstract summary: We develop a machine learning-based parametrization for the gaseous optical properties by training neural networks to emulate a modern radiation parameterization (RRTMGP)
Our neural network-based gas optics parametrization is up to 4 times faster than RRTMGP, depending on the size of the neural networks.
We conclude that our machine learning-based parametrization can speed-up radiative transfer computations whilst retaining high accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The radiative transfer equations are well-known, but radiation
parametrizations in atmospheric models are computationally expensive. A
promising tool for accelerating parametrizations is the use of machine learning
techniques. In this study, we develop a machine learning-based parametrization
for the gaseous optical properties by training neural networks to emulate a
modern radiation parameterization (RRTMGP). To minimize computational costs, we
reduce the range of atmospheric conditions for which the neural networks are
applicable and use machine-specific optimised BLAS functions to accelerate
matrix computations. To generate training data, we use a set of randomly
perturbed atmospheric profiles and calculate optical properties using RRTMGP.
Predicted optical properties are highly accurate and the resulting radiative
fluxes have average errors within \SI{0.5}{\flux} compared to RRTMGP. Our
neural network-based gas optics parametrization is up to 4 times faster than
RRTMGP, depending on the size of the neural networks. We further test the
trade-off between speed and accuracy by training neural networks for the narrow
range of atmospheric conditions of a single large-eddy simulation, so smaller
and therefore faster networks can achieve a desired accuracy. We conclude that
our machine learning-based parametrization can speed-up radiative transfer
computations whilst retaining high accuracy.
Related papers
- Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
Gradual Optimization Learning Framework (GOLF) for energy minimization with neural networks significantly reduces the required additional data.
Our results demonstrate that the neural network trained with GOLF performs on par with the oracle on a benchmark of diverse drug-like molecules.
arXiv Detail & Related papers (2023-11-05T11:48:08Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Symbolic Regression on FPGAs for Fast Machine Learning Inference [2.0920303420933273]
High-energy physics community is investigating the potential of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs)
We introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR)
We show that our approach can approximate a 3-layer neural network using an inference model that achieves up to a 13-fold decrease in execution time, down to 5 ns, while still preserving more than 90% approximation accuracy.
arXiv Detail & Related papers (2023-05-06T17:04:02Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric
Photonic Device Simulation [17.295318670037886]
A physics-agnostic neural framework, dubbed NeurOLight, is proposed to learn a family of frequency-domain Maxwell PDEs for ultra-fast parametric photonic device simulation.
We show that NeurOLight generalizes to a large space of unseen simulation settings, demonstrates 2-orders-of-magnitude faster simulation speed than numerical solvers, and outperforms prior neural network models by 54% lower prediction error with 44% fewer parameters.
arXiv Detail & Related papers (2022-09-19T21:25:26Z) - Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine
Learning [0.0]
We use real-world light detection and ranging (LiDAR) measurements of wind-turbine wakes to construct predictive surrogate models using machine learning.
We find that our approach provides accurate approximations of the wind-turbine wake flow field that can be queried at an orders-of-magnitude cheaper cost than those generated with high-fidelity physics-based simulations.
arXiv Detail & Related papers (2021-09-06T14:46:20Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Transfer Learning with Convolutional Networks for Atmospheric Parameter
Retrieval [14.131127382785973]
The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP)
Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models.
We show how features extracted from the IASI data by a CNN trained to predict a physical variable can be used as inputs to another statistical method designed to predict a different physical variable at low altitude.
arXiv Detail & Related papers (2020-12-09T09:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.