Non-equilibrium readiness and accuracy of Gaussian Quantum Thermometers
- URL: http://arxiv.org/abs/2005.02404v1
- Date: Tue, 5 May 2020 18:00:01 GMT
- Title: Non-equilibrium readiness and accuracy of Gaussian Quantum Thermometers
- Authors: Luca Mancino, Marco G. Genoni, Marco Barbieri, Mauro Paternostro
- Abstract summary: We show how quantum entanglement can enhance the readiness of composite Gaussian thermometers.
We show that non-equilibrium conditions do not guarantee the best sensitivities in temperature estimation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dimensionality of a thermometer is key in the design of quantum
thermometry schemes. In general, the phenomenology that is typical of
finite-dimensional quantum thermometry does not apply to infinite dimensional
ones. We analyse the dynamical and metrological features of non-equilibrium
Gaussian Quantum Thermometers: on one hand, we highlight how quantum
entanglement can enhance the readiness of composite Gaussian thermometers; on
the other hand, we show that non-equilibrium conditions do not guarantee the
best sensitivities in temperature estimation, thus suggesting the reassessment
of the working principles of quantum thermometry.
Related papers
- Enhancing precision thermometry with nonlinear qubits [0.0]
Quantum thermometry refers to the study of measuring ultra-low temperatures in quantum systems.
The precision of such a quantum thermometer is limited by the degree to which temperature can be estimated by quantum measurements.
We show that quantum thermometers described by nonlinear Schr"odinger equations allow for a significantly enhanced precision.
arXiv Detail & Related papers (2024-08-29T16:08:07Z) - Coherence-enhanced single-qubit thermometry out of equilibrium [0.0]
We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal inducing Markov bathian thermalization dynamics.
We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state.
arXiv Detail & Related papers (2024-05-23T11:11:01Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Criticality-enhanced quantum sensor at finite temperature [44.23814225750129]
We propose a thermodynamic-criticality-enhanced quantum sensing scenario at finite temperature.
It is revealed that the thermodynamic criticality of the Dicke model can significantly improve the sensing precision.
arXiv Detail & Related papers (2021-10-15T02:39:31Z) - Non-Markovian quantum thermometry [11.884385161872164]
We propose non-Markovian quantum thermometry to measure the temperature of a quantum reservoir.
It is found that it is the quantum criticality of the total thermometer-reservoir system that causes this enhanced sensitivity.
arXiv Detail & Related papers (2021-09-06T09:39:08Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Tight bound on finite-resolution quantum thermometry at low temperatures [0.0]
We investigate fundamental precision limits for thermometry on cold quantum systems.
We derive a tight bound on the optimal precision scaling with temperature, as the temperature approaches zero.
arXiv Detail & Related papers (2020-01-13T08:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.