Temperature of a finite-dimensional quantum system
- URL: http://arxiv.org/abs/2005.00261v1
- Date: Fri, 1 May 2020 07:47:50 GMT
- Title: Temperature of a finite-dimensional quantum system
- Authors: Andr\'es Vallejo, Alejandro Romanelli and Ra\'ul Don\'angelo
- Abstract summary: A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A general expression for the temperature of a finite-dimensional quantum
system is deduced from thermodynamic arguments. At equilibrium, this magnitude
coincides with the standard thermodynamic temperature. Furthermore, it is
well-defined even far from equilibrium. Explicit formulas for the temperature
of two and three-dimensional quantum systems are presented, and some additional
relevant aspects of this quantity are discussed.
Related papers
- Quantum thermalization of translation-invariant systems at high temperature [0.0]
Quantum thermalization describes how closed quantum systems can effectively reach thermal equilibrium.
Despite its ubiquity and conceptual significance, a complete proof of quantum thermalization has remained elusive for several decades.
We prove that quantum thermalization must occur in any qubit system with local interactions satisfying three conditions.
arXiv Detail & Related papers (2024-09-11T18:00:01Z) - Quantum Thermodynamics [0.0]
Theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm.
Lecture notes provide an introduction to the thermodynamics of small quantum systems.
arXiv Detail & Related papers (2024-06-27T14:28:35Z) - Quantum thermodynamics of nonequilibrium processes in lattice gauge theories [0.0]
We show how to define thermodynamic quantities using strong-coupling thermodynamics.
Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators.
arXiv Detail & Related papers (2024-04-03T18:00:03Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - On the First Law of Thermodynamics in Time-Dependent Open Quantum
Systems [0.0]
How to rigorously define thermodynamic quantities such as heat, work, and internal energy in open quantum systems driven far from equilibrium remains a significant open question in quantum thermodynamics.
Heat is a quantity whose fundamental definition applies only to processes in systems infinitesimally perturbed from equilibrium.
Heat is accounted for carefully in strongly-driven systems.
arXiv Detail & Related papers (2022-08-13T02:26:31Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Temperature in Nonequilibrium Quantum Systems [0.0]
We show that temperature can be assigned to a general nonequilibrium quantum system.
We show that this definition of temperature is one of a set of thermodynamics parameters unambiguously describing the system state.
arXiv Detail & Related papers (2021-05-25T13:17:46Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.