Geometrical Bounds of the Irreversibility in Markovian Systems
- URL: http://arxiv.org/abs/2005.02871v3
- Date: Mon, 30 Nov 2020 13:32:28 GMT
- Title: Geometrical Bounds of the Irreversibility in Markovian Systems
- Authors: Tan Van Vu and Yoshihiko Hasegawa
- Abstract summary: We prove that irreversible entropy production is bounded from below by a modified Wasserstein distance between the initial and final states.
The derived bounds can be interpreted as the quantum and classical speed limits.
- Score: 4.111899441919164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive geometrical bounds on the irreversibility in both quantum and
classical Markovian open systems that satisfy the detailed balance condition.
Using information geometry, we prove that irreversible entropy production is
bounded from below by a modified Wasserstein distance between the initial and
final states, thus strengthening the Clausius inequality in the
reversible-Markov case. The modified metric can be regarded as a discrete-state
generalization of the Wasserstein metric, which has been used to bound
dissipation in continuous-state Langevin systems. Notably, the derived bounds
can be interpreted as the quantum and classical speed limits, implying that the
associated entropy production constrains the minimum time of transforming a
system state. We illustrate the results on several systems and show that a
tighter bound than the Carnot bound for the efficiency of quantum heat engines
can be obtained.
Related papers
- Information geometry approach to quantum stochastic thermodynamics [0.0]
We exploit the fact that any quantum Fisher information (QFI) can be decomposed into a metric-independent incoherent part and a metric-dependent coherent contribution.
We show that the classical uncertainty relation between the geometric uncertainty of a path in state space and the time-integrated rate of information change also holds for quantum systems.
arXiv Detail & Related papers (2024-09-09T21:34:54Z) - Continuity of entropies via integral representations [16.044444452278064]
We show that Frenkel's integral representation of the quantum relative entropy provides a natural framework to derive continuity bounds for quantum information measures.
We obtain a number of results: (1) a tight continuity relation for the conditional entropy in the case where the two states have equal marginals on the conditioning system, resolving a conjecture by Wilde in this special case; (2) a stronger version of the Fannes-Audenaert inequality on quantum entropy; and (3) better estimates on the quantum capacity of approximately degradable channels.
arXiv Detail & Related papers (2024-08-27T17:44:52Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Apparent pathologies in stochastic entropy production in the
thermalisation of an open two-level quantum system [0.0]
We investigate the entropic consequences of the relaxation of an open two-level quantum system towards a thermalised statistical state.
We demonstrate that thermalisation starting from a general state is accompanied by a persistent non-zero mean rate of change of the environmental component of entropy production.
arXiv Detail & Related papers (2023-03-07T11:34:46Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - Unifying speed limit, thermodynamic uncertainty relation and Heisenberg
principle via bulk-boundary correspondence [4.111899441919164]
We convert a Markov process to a quantum field, such that jump events in the Markov process are represented by the creation of particles in the quantum field.
We find that the geometric bound reduces to the speed limit relation when we represent the bound in terms of the system quantity.
The same bound reduces to the thermodynamic uncertainty relation when expressed based on quantities of the quantum field.
arXiv Detail & Related papers (2022-03-23T14:00:30Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.