Information geometry approach to quantum stochastic thermodynamics
- URL: http://arxiv.org/abs/2409.06083v3
- Date: Thu, 21 Nov 2024 17:51:13 GMT
- Title: Information geometry approach to quantum stochastic thermodynamics
- Authors: Laetitia P. Bettmann, John Goold,
- Abstract summary: Recent advancements have revealed new links between information geometry and classical thermodynamics.
We exploit the fact that any quantum Fisher information (QFI) can be decomposed into a metric-independent incoherent part and a metric-dependent coherent contribution.
- Score: 0.0
- License:
- Abstract: Recent advancements have revealed new links between information geometry and classical stochastic thermodynamics, particularly through the Fisher information (FI) with respect to time. Recognizing the non-uniqueness of the quantum Fisher metric in Hilbert space, we exploit the fact that any quantum Fisher information (QFI) can be decomposed into a metric-independent incoherent part and a metric-dependent coherent contribution. We demonstrate that the incoherent component of any QFI can be directly linked to entropic acceleration, and for GKSL dynamics with local detailed balance, to the rate of change of generalised thermodynamic forces and entropic flow, paralleling the classical results. Furthermore, we tighten a classical uncertainty relation between the geometric uncertainty of a path in state space and the time-averaged rate of information change and demonstrate that it also holds for quantum systems. We generalise a classical geometric bound on the entropy rate for far-from-equilibrium processes by incorporating a non-negative quantum contribution that arises from the geometric action due to coherent dynamics. Finally, we apply an information-geometric analysis to the recently proposed quantum-thermodynamic Mpemba effect, demonstrating this framework's ability to capture thermodynamic phenomena.
Related papers
- Force-current structure in Markovian open quantum systems and its applications: geometric housekeeping-excess decomposition and thermodynamic trade-off relations [0.0]
We show that the entropy production rate is given by the product of the force and current operators.
The framework constitutes a comprehensive analogy with the nonequilibrium thermodynamics of discrete classical systems.
arXiv Detail & Related papers (2024-10-30T01:10:58Z) - Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Quantum relative entropy uncertainty relation [0.0]
For classic systems, the fluctuations of a current have a lower bound in terms of the entropy production.
We generalize this idea for quantum systems, where we find a lower bound for the uncertainty of quantum observables given in terms of the quantum relative entropy.
We apply the result to obtain a quantum thermodynamic uncertainty relation in terms of the quantum entropy production, valid for arbitrary dynamics and non-thermal environments.
arXiv Detail & Related papers (2023-09-15T18:58:51Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Quantum Fluctuation Theorem under Continuous Measurement and Feedback [0.0]
We derive the generalized fluctuation theorem under continuous quantum measurement and feedback.
The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer entropy.
Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems.
arXiv Detail & Related papers (2021-12-17T07:02:34Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Quantum thermodynamics under continuous monitoring: a general framework [0.0]
We provide an introduction to the general theoretical framework to establish and interpret thermodynamics for quantum systems.
Main quantities such as work, heat, and entropy production can be defined at the level of thermodynamics.
The connection to irreversibility and fluctuation theorems is also discussed, together with some recent developments.
arXiv Detail & Related papers (2021-12-03T17:02:53Z) - Quantum scrambling and the growth of mutual information [0.0]
Quantum information scrambling refers to the loss of local recoverability of quantum information.
We prove that the growth of entanglement as quantified by the mutual information is lower bounded by the time-dependent change of Out-Of-Time-Ordered Correlator.
arXiv Detail & Related papers (2020-02-07T16:01:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.