Information geometry of transitions between quantum nonequilibrium steady states
- URL: http://arxiv.org/abs/2501.08858v1
- Date: Wed, 15 Jan 2025 15:13:09 GMT
- Title: Information geometry of transitions between quantum nonequilibrium steady states
- Authors: Artur M. Lacerda, Laetitia P. Bettmann, John Goold,
- Abstract summary: We show that for a slow transition between quantum nonequilibrium steady states the nonadiabatic entropy production is to leading order.
We derive an upper bound on the excess entropy flux that holds for arbitrarily fast processes.
- Score: 0.0
- License:
- Abstract: In a transition between nonequilibrium steady states, the entropic cost associated with the maintenance of steady-state currents can be distinguished from that arising from the transition itself through the concepts of excess/housekeeping entropy flux and adiabatic/nonadiabatic entropy production. The thermodynamics of this transition is embodied by the Hatano-Sasa relation. In this letter, we show that for a slow transition between quantum nonequilibrium steady states the nonadiabatic entropy production is, to leading order, given by the path action with respect to a Riemannian metric in the parameter space which can be connected to the Kubo-Mori-Bogoliubov quantum Fisher information. We then demonstrate how to obtain minimally dissipative paths by solving the associated geodesic equation and illustrate the procedure with a simple example of a three-level maser. Furthermore, by identifying the quantum Fisher information with respect to time as a metric in state space, we derive an upper bound on the excess entropy flux that holds for arbitrarily fast processes.
Related papers
- Signatures of Quantum Phase Transitions in Driven Dissipative Spin Chains [0.0]
We show that a driven-dissipative quantum spin chain exhibits a peculiar sensitivity to the ground-state quantum phase transition.
We develop a versatile analytical approach that becomes exact with vanishing dissipation.
arXiv Detail & Related papers (2024-05-30T22:25:15Z) - Quantum stochastic thermodynamics in the mesoscopic-leads formulation [0.0]
We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems.
Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes.
arXiv Detail & Related papers (2024-04-09T16:17:48Z) - Directing entanglement spreading by means of a quantum East/West
heterojunction structure [10.033171830313124]
We extend the translationally invariant quantum East model to an inhomogeneous chain with East/West heterojunction structure.
We observe a cyclic entanglement entropy spreading in the heterojunction during time evolution, which can be regarded as continuous cycles in a quantum heat engine.
arXiv Detail & Related papers (2023-12-03T01:48:35Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Geometrical Bounds of the Irreversibility in Markovian Systems [4.111899441919164]
We prove that irreversible entropy production is bounded from below by a modified Wasserstein distance between the initial and final states.
The derived bounds can be interpreted as the quantum and classical speed limits.
arXiv Detail & Related papers (2020-05-06T14:49:24Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.