論文の概要: Multitask Models for Supervised Protests Detection in Texts
- arxiv url: http://arxiv.org/abs/2005.02954v1
- Date: Wed, 6 May 2020 17:00:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 06:00:29.336159
- Title: Multitask Models for Supervised Protests Detection in Texts
- Title(参考訳): テキストにおける教師付き抗議検出のためのマルチタスクモデル
- Authors: Benjamin J. Radford
- Abstract要約: これら2、3つのタスクの予測を同時に生成できるマルチタスクニューラルネットワークを適用します。
本稿では,自動政治イベント符号化における最先端技術に近い性能を示す。
- 参考スコア(独自算出の注目度): 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The CLEF 2019 ProtestNews Lab tasks participants to identify text relating to
political protests within larger corpora of news data. Three tasks include
article classification, sentence detection, and event extraction. I apply
multitask neural networks capable of producing predictions for two and three of
these tasks simultaneously. The multitask framework allows the model to learn
relevant features from the training data of all three tasks. This paper
demonstrates performance near or above the reported state-of-the-art for
automated political event coding though noted differences in research design
make direct comparisons difficult.
- Abstract(参考訳): clef 2019 protestnewsの参加者は、大規模なニュースデータ内の政治的抗議に関連するテキストを識別する。
3つのタスクは、記事の分類、文の検出、イベント抽出である。
これら2、3つのタスクを同時に予測できるマルチタスクニューラルネットワークを適用します。
マルチタスクフレームワークにより、モデルは3つのタスクのトレーニングデータから関連する機能を学ぶことができる。
本論文は, 政治イベント自動符号化における最先端技術に近い性能を示すが, 研究設計の相違は直接比較が困難である。
関連論文リスト
- Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
部分定義イベントに対するマルチモーダル定式化を導入し、これらのイベントの抽出を3段階スパン検索タスクとしてキャストする。
このタスクのベンチマークであるMultiVENT-Gを提案し,22.8Kのラベル付きイベント中心エンティティを含む,14.5時間の高密度アノテーション付き現在のイベントビデオと1,168のテキストドキュメントからなる。
結果は、イベント理解の抽象的な課題を示し、イベント中心のビデオ言語システムにおける約束を実証する。
論文 参考訳(メタデータ) (2024-10-07T17:59:48Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
本稿では,様々な知覚タスクの表現を調和させる新しい統一表現RepVFを提案する。
RepVFは、ベクトル場を通じてシーン内の異なるターゲットの構造を特徴付け、シングルヘッドでマルチタスクの学習モデルを可能にする。
RepVF 上に構築された RFTR は,タスク間の固有性を利用したネットワークである。
論文 参考訳(メタデータ) (2024-07-15T16:25:07Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue [70.65782786401257]
本研究は、オープンドメイン対話における少数サンプルタスク転送のベンチマークであるFETAを導入することにより、対話型タスク転送について検討する。
FETAには10タスクと7タスクがアノテートされた2つの基礎的な会話が含まれており、データセット内タスク転送の研究を可能にする。
3つの人気のある言語モデルと3つの学習アルゴリズムを用いて、132のソースターゲットタスクペア間の転送可能性を分析する。
論文 参考訳(メタデータ) (2022-05-12T17:59:00Z) - Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work? [112.72413411257662]
大規模言語モデル(LM)は、いくつかのインプットラベルペア(デモ)を条件付けして、新しいインプットの予測を行うことで、インコンテキストで学習することができる。
実演のラベルをランダムに置き換えることは、パフォーマンスをほとんど損なうものではない。
デモの他の側面が、エンドタスクのパフォーマンスの主要な要因であることに気付きました。
論文 参考訳(メタデータ) (2022-02-25T17:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。