Measurement-Driven Phase Transition within a Volume-Law Entangled Phase
- URL: http://arxiv.org/abs/2005.03052v1
- Date: Wed, 6 May 2020 18:01:32 GMT
- Title: Measurement-Driven Phase Transition within a Volume-Law Entangled Phase
- Authors: Sagar Vijay
- Abstract summary: We study a transition between two kinds of volume-law entangled phases in non-local but few-body unitary dynamics.
In one phase, a finite fraction belongs to a fully-entangled state, while in the second phase, the steady-state is a product state over extensively many, finite subsystems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We identify a phase transition between two kinds of volume-law entangled
phases in non-local but few-body unitary dynamics with local projective
measurements. In one phase, a finite fraction of the system belongs to a
fully-entangled state, one for which no subsystem is in a pure state, while in
the second phase, the steady-state is a product state over extensively many,
finite subsystems. We study this "separability" transition in a family of
solvable models in which we analytically determine the transition point, the
evolution of certain entanglement properties of interest, and relate this to a
mean-field percolation transition. Since the entanglement entropy density does
not distinguish these phases, we introduce the entangling power - which
measures whether local measurements outside of two finite subsystems can boost
their mutual information - as an order parameter, after considering its
behavior in tensor network states, and numerically studying its behavior in a
model of Clifford dynamics with measurements. We argue that in our models, the
separability transition coincides with a transition in the computational
"hardness" of classically determining the output probability distribution for
the steady-state in a certain basis of product states. A prediction for this
distribution, which is accurate in the separable phase, and should deviate from
the true distribution in the fully-entangled phase, provides a possible
benchmarking task for quantum computers.
Related papers
- The Non-Adiabatic Sub-Geometric Phase and Its Application on Quantum Transition [0.0]
Whatever the real part or imaginary part of the sub-geometric phase can play an important role in quantum transition.
It indicates that both the real and imaginary parts of sub-geometric phase have influence on quantum transition.
arXiv Detail & Related papers (2024-05-17T11:10:14Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Entanglement transitions and quantum bifurcations under continuous
long-range monitoring [0.0]
We study the bipartite entanglement entropy of the quantum trajectories of a free-fermionic system, when subject to a continuous nonlocal monitoring.
arXiv Detail & Related papers (2023-07-11T18:00:08Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Predicting Critical Phases from Entanglement Dynamics in XXZ Alternating
Chain [0.0]
The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich equilibrium phase diagram.
We show that the nearest neighbor bipartite and multipartite entanglement can detect quantum critical lines and phases in this model.
arXiv Detail & Related papers (2021-12-22T18:02:51Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.