論文の概要: Distributional robustness of K-class estimators and the PULSE
- arxiv url: http://arxiv.org/abs/2005.03353v3
- Date: Sat, 26 Mar 2022 00:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 22:56:26.343601
- Title: Distributional robustness of K-class estimators and the PULSE
- Title(参考訳): Kクラス推定器とPULSEの分布ロバスト性
- Authors: Martin Emil Jakobsen and Jonas Peters
- Abstract要約: 古典的Kクラス推定器は、Kクラス推定器とアンカー回帰との接続を確立することにより、そのような最適性を満たすことを証明する。
データ駆動型シミュレーションKクラス推定器として効率的に計算できることを示す。
弱い楽器の設定を含むいくつかの設定があり、他の推定値よりも優れています。
- 参考スコア(独自算出の注目度): 4.56877715768796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While causal models are robust in that they are prediction optimal under
arbitrarily strong interventions, they may not be optimal when the
interventions are bounded. We prove that the classical K-class estimator
satisfies such optimality by establishing a connection between K-class
estimators and anchor regression. This connection further motivates a novel
estimator in instrumental variable settings that minimizes the mean squared
prediction error subject to the constraint that the estimator lies in an
asymptotically valid confidence region of the causal coefficient. We call this
estimator PULSE (p-uncorrelated least squares estimator), relate it to work on
invariance, show that it can be computed efficiently as a data-driven K-class
estimator, even though the underlying optimization problem is non-convex, and
prove consistency. We evaluate the estimators on real data and perform
simulation experiments illustrating that PULSE suffers from less variability.
There are several settings including weak instrument settings, where it
outperforms other estimators.
- Abstract(参考訳): 因果モデルは、任意に強い介入の下で最適な予測をするという点で堅牢であるが、介入が境界づけられたときは最適ではないかもしれない。
古典的Kクラス推定器は、Kクラス推定器とアンカー回帰との接続を確立することにより、そのような最適性を満たすことを証明する。
この接続は、因果係数の漸近的に妥当な信頼領域にあるという制約を受ける平均二乗予測誤差を最小化するインストゥルメンタル変数設定において、新たな推定器を動機付ける。
我々はこの推定器 PULSE (p-uncorrelated least squares estimator) と呼び、非凸であるにもかかわらずデータ駆動型Kクラス推定器として効率的に計算できることを示し、一貫性を証明する。
実データに基づく推定値の評価を行い,PULSEの変動性が低いことを示すシミュレーション実験を行った。
弱い楽器の設定を含むいくつかの設定があり、他の推定値よりも優れている。
関連論文リスト
- Semiparametric conformal prediction [79.6147286161434]
リスクに敏感なアプリケーションは、複数の、潜在的に相関したターゲット変数に対して、よく校正された予測セットを必要とする。
スコアをランダムなベクトルとして扱い、それらの連接関係構造を考慮した予測セットを構築することを目的とする。
実世界のレグレッション問題に対して,所望のカバレッジと競争効率について報告する。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - C-Learner: Constrained Learning for Causal Inference and Semiparametric Statistics [5.395560682099634]
そこで本研究では,安定なプラグイン推定を望ましい特性で実現する新しいデバイアス推定器を提案する。
我々の制約学習フレームワークは、プラグイン量に対する一階誤差がゼロであるという制約の下で、最高のプラグイン推定器を解く。
我々の推定器は、処理と制御の重複が限定された挑戦的な環境での一段階推定と目標を上回り、それ以外は比較可能である。
論文 参考訳(メタデータ) (2024-05-15T16:38:28Z) - Statistical Barriers to Affine-equivariant Estimation [10.077727846124633]
本研究では,ロバスト平均推定のためのアフィン同変推定器の定量的性能について検討する。
古典的推定器は定量的に準最適であるか、あるいは量的保証が欠如していることが分かる。
我々は、下界にほぼ一致する新しいアフィン同変推定器を構築する。
論文 参考訳(メタデータ) (2023-10-16T18:42:00Z) - Error Reduction from Stacked Regressions [12.657895453939298]
積み重ね回帰は、予測精度を高めるために異なる回帰推定器の線形結合を形成するアンサンブル手法である。
本稿では,非負性制約を受ける経験的リスクの正規化バージョンを最小化することにより,これらの重みを類似的に学習する。
適応的縮小効果により、結果として生じる累積推定量は、最も優れた単一推定値よりも人口リスクが厳しく小さい。
論文 参考訳(メタデータ) (2023-09-18T15:42:12Z) - Propensity score models are better when post-calibrated [0.32228025627337864]
ポスト校正は、表現的未校正統計推定器における効果推定における誤差を低減する。
効果推定の改善とポスト校正が計算的に安価であることを考えると、表現的モデルを用いて確率スコアをモデル化する場合に採用することを推奨する。
論文 参考訳(メタデータ) (2022-11-02T16:01:03Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。