論文の概要: Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video
- arxiv url: http://arxiv.org/abs/2005.03372v3
- Date: Wed, 20 May 2020 04:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 00:18:51.203922
- Title: Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video
- Title(参考訳): Vid2Curve:RGBビデオからの同時カメラモーション推定と微細構造再構築
- Authors: Peng Wang, Lingjie Liu, Nenglun Chen, Hung-Kuo Chu, Christian
Theobalt, Wenping Wang
- Abstract要約: ワイヤーフレーム彫刻、フェンス、ケーブル、電力線、木の枝などの細い構造は現実世界では一般的である。
従来の画像ベースや深度ベースの再構築手法を用いて3Dデジタルモデルを入手することは極めて困難である。
ハンドヘルドカメラで撮影したカラービデオから,カメラの動きを同時に推定し,複雑な3次元薄膜構造の形状を高品質に再構成する手法を提案する。
- 参考スコア(独自算出の注目度): 90.93141123721713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thin structures, such as wire-frame sculptures, fences, cables, power lines,
and tree branches, are common in the real world. It is extremely challenging to
acquire their 3D digital models using traditional image-based or depth-based
reconstruction methods because thin structures often lack distinct point
features and have severe self-occlusion. We propose the first approach that
simultaneously estimates camera motion and reconstructs the geometry of complex
3D thin structures in high quality from a color video captured by a handheld
camera. Specifically, we present a new curve-based approach to estimate
accurate camera poses by establishing correspondences between featureless thin
objects in the foreground in consecutive video frames, without requiring visual
texture in the background scene to lock on. Enabled by this effective
curve-based camera pose estimation strategy, we develop an iterative
optimization method with tailored measures on geometry, topology as well as
self-occlusion handling for reconstructing 3D thin structures. Extensive
validations on a variety of thin structures show that our method achieves
accurate camera pose estimation and faithful reconstruction of 3D thin
structures with complex shape and topology at a level that has not been
attained by other existing reconstruction methods.
- Abstract(参考訳): ワイヤーフレーム彫刻、フェンス、ケーブル、電力線、木の枝などの細い構造は現実世界では一般的である。
従来の画像ベースや深度ベースの再構築手法を用いて3Dデジタルモデルを入手することは極めて困難である。
ハンドヘルドカメラで撮影したカラービデオから,カメラの動きを同時に推定し,複雑な3次元薄膜構造の形状を高品質に再構成する手法を提案する。
具体的には,背景シーンの視覚的テクスチャをロックオンすることなく,前景における特徴のない細い物体間の対応性を確立することで,正確なカメラポーズを推定するための曲線ベースの新しいアプローチを提案する。
この効果的な曲線型カメラポーズ推定戦略により, 形状, トポロジー, 自己排他性を考慮した3次元構造再構成のための反復的最適化手法を開発した。
種々の薄型構造物に対する広範囲な検証により, 既存の復元方法では得られていない複雑な形状とトポロジーを有する3次元薄型構造物の高精度なカメラポーズ推定と忠実な復元が達成された。
関連論文リスト
- FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views [93.6881532277553]
FLAREは、高品質カメラのポーズと3次元幾何を、補正されていないスパースビュー画像から推定するために設計されたフィードフォワードモデルである。
本ソリューションでは,3次元構造を2次元画像平面にマッピングする上で,カメラポーズが重要なブリッジとして機能するケースケード学習パラダイムを特徴とする。
論文 参考訳(メタデータ) (2025-02-17T18:54:05Z) - Unified Few-shot Crack Segmentation and its Precise 3D Automatic Measurement in Concrete Structures [2.178830801484721]
本研究では, 2次元(2次元)き裂検出, 3次元再構築, 3次元自動き裂計測のためのフレームワークを提案する。
そこで我々は,不慣れなシナリオにまたがって強力な一般化を図り,正確な2次元き裂マスクの生成を可能にするき裂分割法を開発した。
画像とLiDAR-SLAMの両方を活用することで、高密度で彩色された点雲を生成するマルチフレームおよびマルチモーダル融合フレームワークを開発した。
論文 参考訳(メタデータ) (2025-01-15T23:36:05Z) - R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras [106.52409577316389]
R3D3は高密度3次元再構成とエゴモーション推定のためのマルチカメラシステムである。
提案手法は,複数のカメラからの時空間情報と単眼深度補正を利用する。
この設計により、困難で動的な屋外環境の密集した一貫した3次元再構成が可能になる。
論文 参考訳(メタデータ) (2023-08-28T17:13:49Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
Listは、局所的およびグローバルな画像特徴を活用して、単一の画像から3Dオブジェクトの幾何学的および位相的構造を再構築する、新しいニューラルネットワークである。
合成画像と実世界の画像から3Dオブジェクトを再構成する際のモデルの有用性を示す。
論文 参考訳(メタデータ) (2023-07-23T01:01:27Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
微分可能レンダリング(DR)に基づく3次元オブジェクト再構成はコンピュータビジョンにおいて活発な研究課題である。
DRに基づく多視点3Dオブジェクト再構成において,構造化光(SL)を用いたアクティブセンシングを導入し,任意のシーンやカメラポーズの未知の形状と外観を学習する。
本手法は, テクスチャレス領域における高い再現精度を実現し, カメラポーズキャリブレーションの労力を削減する。
論文 参考訳(メタデータ) (2022-11-22T03:10:46Z) - Towards Non-Line-of-Sight Photography [48.491977359971855]
非視線イメージング(NLOS)は、隠された物体からの多重バウンス間接反射を捉えることに基づいている。
アクティブなNLOSイメージングシステムは、シーンを通しての光の飛行時間の捕捉に依存している。
我々はNLOS写真と呼ばれる新しい問題定式化を提案し、この欠陥に特に対処する。
論文 参考訳(メタデータ) (2021-09-16T08:07:13Z) - Online Adaptation for Consistent Mesh Reconstruction in the Wild [147.22708151409765]
入ってくるテストビデオに適用する自己教師型オンライン適応問題として、ビデオベースの再構成を行う。
我々は,野生で捕獲された動物を含む非剛体物体のビデオから,時間的に一貫した信頼性の高い3D構造を復元できることを実証した。
論文 参考訳(メタデータ) (2020-12-06T07:22:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。