論文の概要: Unified Few-shot Crack Segmentation and its Precise 3D Automatic Measurement in Concrete Structures
- arxiv url: http://arxiv.org/abs/2501.09203v1
- Date: Wed, 15 Jan 2025 23:36:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:28.878849
- Title: Unified Few-shot Crack Segmentation and its Precise 3D Automatic Measurement in Concrete Structures
- Title(参考訳): コンクリート構造物のファウショットき裂分離と精密3次元自動計測
- Authors: Pengru Deng, Jiapeng Yao, Chun Li, Su Wang, Xinrun Li, Varun Ojha, Xuhui He, Takashi Matsumoto,
- Abstract要約: 本研究では, 2次元(2次元)き裂検出, 3次元再構築, 3次元自動き裂計測のためのフレームワークを提案する。
そこで我々は,不慣れなシナリオにまたがって強力な一般化を図り,正確な2次元き裂マスクの生成を可能にするき裂分割法を開発した。
画像とLiDAR-SLAMの両方を活用することで、高密度で彩色された点雲を生成するマルチフレームおよびマルチモーダル融合フレームワークを開発した。
- 参考スコア(独自算出の注目度): 2.178830801484721
- License:
- Abstract: Visual-Spatial Systems has become increasingly essential in concrete crack inspection. However, existing methods often lacks adaptability to diverse scenarios, exhibits limited robustness in image-based approaches, and struggles with curved or complex geometries. To address these limitations, an innovative framework for two-dimensional (2D) crack detection, three-dimensional (3D) reconstruction, and 3D automatic crack measurement was proposed by integrating computer vision technologies and multi-modal Simultaneous localization and mapping (SLAM) in this study. Firstly, building on a base DeepLabv3+ segmentation model, and incorporating specific refinements utilizing foundation model Segment Anything Model (SAM), we developed a crack segmentation method with strong generalization across unfamiliar scenarios, enabling the generation of precise 2D crack masks. To enhance the accuracy and robustness of 3D reconstruction, Light Detection and Ranging (LiDAR) point clouds were utilized together with image data and segmentation masks. By leveraging both image- and LiDAR-SLAM, we developed a multi-frame and multi-modal fusion framework that produces dense, colorized point clouds, effectively capturing crack semantics at a 3D real-world scale. Furthermore, the crack geometric attributions were measured automatically and directly within 3D dense point cloud space, surpassing the limitations of conventional 2D image-based measurements. This advancement makes the method suitable for structural components with curved and complex 3D geometries. Experimental results across various concrete structures highlight the significant improvements and unique advantages of the proposed method, demonstrating its effectiveness, accuracy, and robustness in real-world applications.
- Abstract(参考訳): コンクリートひび割れ検査における視覚空間システムの重要性が高まっている。
しかし、既存の手法は様々なシナリオへの適応性に欠けることが多く、画像ベースアプローチの頑丈さに限界があり、曲面や複雑な幾何学に苦しむ。
これらの制約に対処するために,コンピュータビジョン技術とマルチモーダル同時局在マッピング(SLAM)を統合した2次元(2次元)き裂検出,3次元(3次元)再構築,および3次元自動き裂計測のための革新的なフレームワークを提案した。
まず,基盤となるDeepLabv3+セグメンテーションモデル上に構築し,基礎モデルセグメンテーションモデル(SAM)を用いた特定の精細化を取り入れた。
3次元再構成の精度とロバスト性を高めるため,光検出・ランドング(LiDAR)点雲と画像データとセグメンテーションマスクを併用した。
画像とLiDAR-SLAMの両方を活用することで、高密度で色付けされた点雲を生成するマルチフレームおよびマルチモーダル融合フレームワークを開発し、3次元実世界のスケールで効果的にクラックセマンティクスをキャプチャした。
さらに, クラック形状の属性は, 従来の2次元画像計測の限界を超えた3次元高密度点雲空間内で, 直接的かつ自動的に測定された。
この進歩は、曲線状で複雑な3次元測地を持つ構造成分に適している。
各種コンクリート構造物にまたがる実験結果から,提案手法の有効性,精度,ロバスト性を実証し,提案手法の顕著な改善と独特な利点を浮き彫りにした。
関連論文リスト
- GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
大規模再構成モデルは、単一または複数入力画像から自動3Dコンテンツ生成の領域において大きな進歩を遂げている。
彼らの成功にもかかわらず、これらのモデルはしばしば幾何学的不正確な3Dメッシュを生成し、画像データからのみ3D形状を推論する固有の課題から生まれた。
生成した3Dメッシュの忠実度を高めるために3Dポイントクラウドデータを利用する新しいフレームワークであるLarge Image and Point Cloud Alignment Model (LAM3D)を導入する。
論文 参考訳(メタデータ) (2024-05-24T15:09:12Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
本稿では,視覚のみのサラウンドビュー知覚に適したジオメトリ強化OccupancyネットワークであるGEOccについて述べる。
提案手法は,Occ3D-nuScenesデータセット上で,画像解像度が最小で,画像バックボーンが最大である状態-Of-The-Art性能を実現する。
論文 参考訳(メタデータ) (2024-05-17T07:31:20Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
本稿では,3次元シーンのカメラポーズ,オブジェクト形状,空間変化の両方向反射分布関数(svBRDF)のジョイントリカバリ手法を提案する。
入力は高解像度のRGBD画像であり、アクティブ照明用の点灯付き携帯型ハンドヘルドキャプチャシステムによってキャプチャされる。
論文 参考訳(メタデータ) (2023-06-06T15:07:39Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
微分可能レンダリング(DR)に基づく3次元オブジェクト再構成はコンピュータビジョンにおいて活発な研究課題である。
DRに基づく多視点3Dオブジェクト再構成において,構造化光(SL)を用いたアクティブセンシングを導入し,任意のシーンやカメラポーズの未知の形状と外観を学習する。
本手法は, テクスチャレス領域における高い再現精度を実現し, カメラポーズキャリブレーションの労力を削減する。
論文 参考訳(メタデータ) (2022-11-22T03:10:46Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
現在のモノクラーベース6Dオブジェクトポーズ推定法は、一般的にRGBDベースの手法よりも競争力の低い結果が得られる。
本稿では,短いベースライン2ビュー設定による3次元幾何体積に基づくポーズ推定手法を提案する。
実験により,本手法は最先端の単分子法よりも優れ,異なる物体やシーンにおいて堅牢であることが示された。
論文 参考訳(メタデータ) (2021-09-25T02:55:05Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video [90.93141123721713]
ワイヤーフレーム彫刻、フェンス、ケーブル、電力線、木の枝などの細い構造は現実世界では一般的である。
従来の画像ベースや深度ベースの再構築手法を用いて3Dデジタルモデルを入手することは極めて困難である。
ハンドヘルドカメラで撮影したカラービデオから,カメラの動きを同時に推定し,複雑な3次元薄膜構造の形状を高品質に再構成する手法を提案する。
論文 参考訳(メタデータ) (2020-05-07T10:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。