論文の概要: Lifted Regression/Reconstruction Networks
- arxiv url: http://arxiv.org/abs/2005.03452v1
- Date: Thu, 7 May 2020 13:24:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 22:48:08.251425
- Title: Lifted Regression/Reconstruction Networks
- Title(参考訳): Lifted Regression/Reconstruction Networks
- Authors: Rasmus Kj{\ae}r H{\o}ier, Christopher Zach
- Abstract要約: 本稿では,リフレクション/リコンストラクションネットワーク(LRRN)を提案する。
LRRNは、昇降ニューラルネットワークと出力層に対する保証されたリプシッツ連続性特性を結合する。
教師なし・教師なし学習への応用を解析・数値的に実証する。
- 参考スコア(独自算出の注目度): 17.89437720094451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we propose lifted regression/reconstruction networks (LRRNs),
which combine lifted neural networks with a guaranteed Lipschitz continuity
property for the output layer. Lifted neural networks explicitly optimize an
energy model to infer the unit activations and therefore---in contrast to
standard feed-forward neural networks---allow bidirectional feedback between
layers. So far lifted neural networks have been modelled around standard
feed-forward architectures. We propose to take further advantage of the
feedback property by letting the layers simultaneously perform regression and
reconstruction. The resulting lifted network architecture allows to control the
desired amount of Lipschitz continuity, which is an important feature to obtain
adversarially robust regression and classification methods. We analyse and
numerically demonstrate applications for unsupervised and supervised learning.
- Abstract(参考訳): 本研究では,昇降型ニューラルネットワークと,出力層に対するリプシッツ連続性を考慮した昇降型回帰/再構成ネットワーク(lrrns)を提案する。
リフテッドニューラルネットワークは、ユニットアクティベーションを推測するためにエネルギーモデルを明示的に最適化し、標準フィードフォワードニューラルネットワークとは対照的に、レイヤ間の双方向フィードバックを許容する。
これまでのところ、ニューラルネットワークは標準フィードフォワードアーキテクチャを中心にモデル化されてきた。
本稿では,各層が同時に回帰と再構成を行うことにより,フィードバック特性をさらに活用することを提案する。
結果として引き揚げられたネットワークアーキテクチャは所望の量のリプシッツ連続性を制御することが可能であり、これは敵対的にロバストな回帰法と分類法を得る上で重要な特徴である。
教師なし学習と教師なし学習の応用を解析し,数値的に示す。
関連論文リスト
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
本稿では,2層完全連結ニューラルネットワークを用いた最小二乗回帰問題と,勾配流によるReLU活性化関数について検討する。
最初の結果は一般化結果であり、基礎となる回帰関数や、それらが有界であること以外のノイズを仮定する必要はない。
論文 参考訳(メタデータ) (2024-10-08T16:54:23Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
勾配降下法により訓練された深度2ニューラルネットの収束度を世界最小とする。
我々のモデルには、二次損失関数による回帰、完全連結フィードフォワードアーキテクチャ、RelUアクティベーション、ガウスデータインスタンス、逆ラベルといった特徴がある。
彼らは、少なくとも我々のモデルでは、収束現象がNTK体制をはるかに超越していることを強く示唆している」。
論文 参考訳(メタデータ) (2022-12-05T14:47:52Z) - Clustering-Based Interpretation of Deep ReLU Network [17.234442722611803]
我々はReLU関数の非線形挙動が自然なクラスタリングを引き起こすことを認識している。
本稿では,完全連結フィードフォワードReLUニューラルネットワークの解釈可能性を高める手法を提案する。
論文 参考訳(メタデータ) (2021-10-13T09:24:11Z) - Predify: Augmenting deep neural networks with brain-inspired predictive
coding dynamics [0.5284812806199193]
我々は神経科学の一般的な枠組みからインスピレーションを得た:「予測コーディング」
本稿では、この戦略をVGG16とEfficientNetB0という2つの人気ネットワークに実装することで、様々な汚職に対する堅牢性を向上させることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:48:13Z) - Self-Reorganizing and Rejuvenating CNNs for Increasing Model Capacity
Utilization [8.661269034961679]
本稿では,ニューラルネットワークの計算資源利用を改善するための生物学的手法を提案する。
提案手法では,畳み込み層のチャネルアクティベーションを利用して,その層パラメータを再構成する。
再生されたパラメータは、再構成された生存パラメータから学んだことを補うために異なる特徴を学ぶ。
論文 参考訳(メタデータ) (2021-02-13T06:19:45Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Implicit recurrent networks: A novel approach to stationary input
processing with recurrent neural networks in deep learning [0.0]
本研究では,ニューラルネットの新たな実装を深層学習に導入し,検証する。
繰り返しネットワークの暗黙的な実装にバックプロパゲーションアルゴリズムを実装するアルゴリズムを提案する。
シングルレイヤの暗黙的リカレントネットワークはXOR問題を解くことができ、一方、単調に活性化関数が増加するフィードフォワードネットワークは、このタスクで失敗する。
論文 参考訳(メタデータ) (2020-10-20T18:55:32Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。