論文の概要: Transfer Learning for sEMG-based Hand Gesture Classification using Deep
Learning in a Master-Slave Architecture
- arxiv url: http://arxiv.org/abs/2005.03460v1
- Date: Mon, 27 Apr 2020 01:16:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 05:05:00.244898
- Title: Transfer Learning for sEMG-based Hand Gesture Classification using Deep
Learning in a Master-Slave Architecture
- Title(参考訳): マスタースレーブアーキテクチャにおける深層学習を用いたsEMGに基づく手指義手分類のための伝達学習
- Authors: Karush Suri, Rinki Gupta
- Abstract要約: 本研究は,複数のsEMGチャネルから記録された信号を用いて,インド手話からの信号の分類を行うディープニューラルネットワーク(DNN)からなる,新しいマスタスレーブアーキテクチャを提案する。
従来のDNNでは最大14%の改善が見られ、提案手法の適合性を主張する平均精度93.5%の合成データの追加により、マスタースレーブネットワークの最大9%の改善が見られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in diagnostic learning and development of gesture-based
human machine interfaces have driven surface electromyography (sEMG) towards
significant importance. Analysis of hand gestures requires an accurate
assessment of sEMG signals. The proposed work presents a novel sequential
master-slave architecture consisting of deep neural networks (DNNs) for
classification of signs from the Indian sign language using signals recorded
from multiple sEMG channels. The performance of the master-slave network is
augmented by leveraging additional synthetic feature data generated by long
short term memory networks. Performance of the proposed network is compared to
that of a conventional DNN prior to and after the addition of synthetic data.
Up to 14% improvement is observed in the conventional DNN and up to 9%
improvement in master-slave network on addition of synthetic data with an
average accuracy value of 93.5% asserting the suitability of the proposed
approach.
- Abstract(参考訳): ジェスチャーに基づくヒューマンマシンインタフェースの診断学習と開発における最近の進歩は、表面筋電図(sEMG)を重要視している。
手のジェスチャーの分析には、sEMG信号の正確な評価が必要である。
本研究は,複数のsEMGチャネルから記録された信号を用いて,インド手話からの信号の分類を行うディープニューラルネットワーク(DNN)からなる,新しいマスタスレーブアーキテクチャを提案する。
短期記憶ネットワークによって生成された追加の合成特徴データを利用することにより、マスタスレーブネットワークの性能が向上する。
提案するネットワークの性能は,合成データの追加前後の従来のDNNの性能と比較する。
従来のDNNでは最大14%の改善が見られ、提案手法の適合性を主張する平均精度93.5%の合成データの追加により、マスタースレーブネットワークが最大9%改善されている。
関連論文リスト
- FORS-EMG: A Novel sEMG Dataset for Hand Gesture Recognition Across Multiple Forearm Orientations [1.3852370777848657]
表面筋電図(sEMG)信号はジェスチャー認識と頑健な義手発達に重要な可能性を秘めている。
本研究は、3つの異なる方向をまたいだ手の動きを評価するための新しいMFI sEMGデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-03T14:23:06Z) - An LSTM Feature Imitation Network for Hand Movement Recognition from sEMG Signals [2.632402517354116]
我々は,Ninapro DB2上の300ms信号ウィンドウ上での閉形式時間特徴学習にFIN(Feature-imitating Network)を適用することを提案する。
次に、下流手の動き認識タスクに事前学習したLSTM-FINを適用して、転送学習機能について検討する。
論文 参考訳(メタデータ) (2024-05-23T21:45:15Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - From Unimodal to Multimodal: improving sEMG-Based Pattern Recognition
via deep generative models [1.1477981286485912]
マルチモーダルハンドジェスチャ認識(HGR)システムは,HGRシステムと比較して高い認識精度を実現することができる。
本稿では,仮想慣性計測ユニット(IMU)信号を用いた表面筋電図(sEMG)に基づくHGRの精度向上のための新しい生成手法を提案する。
論文 参考訳(メタデータ) (2023-08-08T07:15:23Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
本稿では,ネットワーク・テンポラルエンコーディングと繰り返しアテンションブロックのハイブリッド構造を用いて,解釈可能な表現を取得するディープニューラルネットワークを提案する。
提案したアーキテクチャは、公開されているDEAPデータセット上での感情分類の最先端結果を上回ることを実証する。
論文 参考訳(メタデータ) (2023-07-06T15:35:14Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - TEMGNet: Deep Transformer-based Decoding of Upperlimb sEMG for Hand
Gestures Recognition [16.399230849853915]
本研究では,SEMG信号を処理するためのTransformerアーキテクチャに基づくフレームワークを開発する。
上肢のジェスチャーを分類・認識するための新しい視覚変換器(ViT)ベースのニューラルネットワークアーキテクチャ(TEMGNet)を提案する。
論文 参考訳(メタデータ) (2021-09-25T15:03:22Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。