論文の概要: A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition
- arxiv url: http://arxiv.org/abs/2307.03068v1
- Date: Thu, 6 Jul 2023 15:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 13:36:57.847253
- Title: A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition
- Title(参考訳): 脳波認識のためのグラフスムース信号を用いたハイブリッド・エンド・エンド時空間アテンションニューラルネットワーク
- Authors: Shadi Sartipi and Mastaneh Torkamani-Azar and Mujdat Cetin
- Abstract要約: 本稿では,ネットワーク・テンポラルエンコーディングと繰り返しアテンションブロックのハイブリッド構造を用いて,解釈可能な表現を取得するディープニューラルネットワークを提案する。
提案したアーキテクチャは、公開されているDEAPデータセット上での感情分類の最先端結果を上回ることを実証する。
- 参考スコア(独自算出の注目度): 1.6328866317851187
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, physiological data such as electroencephalography (EEG) signals
have attracted significant attention in affective computing. In this context,
the main goal is to design an automated model that can assess emotional states.
Lately, deep neural networks have shown promising performance in emotion
recognition tasks. However, designing a deep architecture that can extract
practical information from raw data is still a challenge. Here, we introduce a
deep neural network that acquires interpretable physiological representations
by a hybrid structure of spatio-temporal encoding and recurrent attention
network blocks. Furthermore, a preprocessing step is applied to the raw data
using graph signal processing tools to perform graph smoothing in the spatial
domain. We demonstrate that our proposed architecture exceeds state-of-the-art
results for emotion classification on the publicly available DEAP dataset. To
explore the generality of the learned model, we also evaluate the performance
of our architecture towards transfer learning (TL) by transferring the model
parameters from a specific source to other target domains. Using DEAP as the
source dataset, we demonstrate the effectiveness of our model in performing
cross-modality TL and improving emotion classification accuracy on DREAMER and
the Emotional English Word (EEWD) datasets, which involve EEG-based emotion
classification tasks with different stimuli.
- Abstract(参考訳): 近年,心電図(eeg)信号などの生理データが情動計算に注目されている。
この文脈での主な目標は、感情状態を評価する自動化モデルを設計することです。
近年、ディープニューラルネットワークは感情認識タスクにおいて有望なパフォーマンスを示している。
しかし、生データから実用的な情報を抽出する深層アーキテクチャの設計は依然として課題である。
本稿では,時空間符号化とリカレントアテンションネットワークブロックのハイブリッド構造により,解釈可能な生理学的表現を得るディープニューラルネットワークを提案する。
さらに、グラフ信号処理ツールを用いて生データに前処理ステップを適用し、空間領域でグラフ平滑化を行う。
提案するアーキテクチャは,公開のdeapデータセットにおける感情分類の最先端結果を超えることを実証する。
また,学習モデルの汎用性を検討するために,モデルパラメータを特定のソースから他のターゲットドメインに転送することで,トランスファー学習(tl)に向けたアーキテクチャの性能を評価する。
DREAMER と Emotional English Word (EEWD) データセットでは,脳波に基づく感情分類タスクと異なる刺激を伴う感情分類タスクを伴って,モデルの有効性を実証する。
関連論文リスト
- MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning [8.561375293735733]
音楽誘発脳波(EEG)記録のマルチモーダルコレクションであるMEEGデータセットについて述べる。
本稿では,脳波に基づく感情認識のための新しいフレームワークである動的グラフニューラルネットワーク(AT-DGNN)を用いた注意に基づく時間学習について紹介する。
論文 参考訳(メタデータ) (2024-07-08T01:58:48Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
感情認識のための一般的なディープラーニングアプローチを包括的に評価する。
音声信号の長距離依存性が感情認識に重要であることを示す。
スピード/レート向上は、モデル間で最も堅牢なパフォーマンス向上を提供する。
論文 参考訳(メタデータ) (2022-11-09T17:27:03Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
我々はEEG-ITNetと呼ばれるエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは,多チャンネル脳波信号からスペクトル,空間,時間情報を抽出することができる。
EEG-ITNetは、異なるシナリオにおける分類精度を最大5.9%改善する。
論文 参考訳(メタデータ) (2022-04-14T13:18:43Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
主観非依存の感情認識が可能な新しいディープラーニングフレームワークを提案する。
タスクを実行するために、アテンションフレームワークを備えた畳み込みニューラルネットワーク(CNN)を提示する。
提案手法は、公開データセットを使用して検証されている。
論文 参考訳(メタデータ) (2021-06-07T09:41:15Z) - ScalingNet: extracting features from raw EEG data for emotion
recognition [4.047737925426405]
生の脳波信号から効果的なデータ駆動スペクトログラムのような特徴を適応的に抽出できる新しい畳み込み層を提案する。
スケーリング層に基づくニューラルネットワークアーキテクチャであるScalingNetは、確立されたDEAPベンチマークデータセット全体で最先端の結果を達成した。
論文 参考訳(メタデータ) (2021-02-07T08:54:27Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。