論文の概要: Plan2Vec: Unsupervised Representation Learning by Latent Plans
- arxiv url: http://arxiv.org/abs/2005.03648v1
- Date: Thu, 7 May 2020 17:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 22:21:48.592171
- Title: Plan2Vec: Unsupervised Representation Learning by Latent Plans
- Title(参考訳): Plan2Vec: 潜在計画による教師なし表現学習
- Authors: Ge Yang, Amy Zhang, Ari S. Morcos, Joelle Pineau, Pieter Abbeel,
Roberto Calandra
- Abstract要約: Plan2vecは、強化学習にインスパイアされた教師なしの表現学習手法である。
Plan2vecは、近距離を用いて画像データセット上に重み付きグラフを構築し、その局所距離を、計画された経路上の経路積分を蒸留することによって、大域的な埋め込みに外挿する。
1つのシミュレーションと2つの実世界の画像データセットに対する Plan2vec の有効性を実証する。
- 参考スコア(独自算出の注目度): 106.37274654231659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we introduce plan2vec, an unsupervised representation learning
approach that is inspired by reinforcement learning. Plan2vec constructs a
weighted graph on an image dataset using near-neighbor distances, and then
extrapolates this local metric to a global embedding by distilling
path-integral over planned path. When applied to control, plan2vec offers a way
to learn goal-conditioned value estimates that are accurate over long horizons
that is both compute and sample efficient. We demonstrate the effectiveness of
plan2vec on one simulated and two challenging real-world image datasets.
Experimental results show that plan2vec successfully amortizes the planning
cost, enabling reactive planning that is linear in memory and computation
complexity rather than exhaustive over the entire state space.
- Abstract(参考訳): 本稿では,強化学習にインスパイアされた教師なし表現学習手法である plan2vec を紹介する。
Plan2vecは、近距離を用いて画像データセット上に重み付きグラフを構築し、その局所距離を、計画された経路上の経路積分を蒸留することによって、グローバルな埋め込みに外挿する。
Plan2vecは、制御に適用すると、計算とサンプル効率の両方の長い地平線上で正確なゴール条件付き値推定を学習する方法を提供する。
1つのシミュレーションと2つの実世界の画像データセットに対する Plan2vec の有効性を示す。
実験の結果, Plan2vec は計画コストの削減に成功し, メモリの線形なリアクティブ計画と計算の複雑さを実現した。
関連論文リスト
- PAS-SLAM: A Visual SLAM System for Planar Ambiguous Scenes [41.47703182059505]
平面不明瞭なシーンを対象とした平面的特徴に基づく視覚的SLAMシステムを提案する。
本稿では,平面パラメータ,意味情報,投影IoU,非パラメトリックテストを組み合わせた統合データアソシエーション戦略を提案する。
最後に、カメラポーズ最適化のための多重制約係数グラフのセットを設計する。
論文 参考訳(メタデータ) (2024-02-09T01:34:26Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Parting with Misconceptions about Learning-based Vehicle Motion Planning [30.39229175273061]
nuPlanは、自動車の運動計画研究の新しい時代を象徴している。
既存のシステムは、両方の要件を同時に満たすのに苦労しています。
本稿では,非常にシンプルで効率的なプランナを提案する。
論文 参考訳(メタデータ) (2023-06-13T17:57:03Z) - PALMER: Perception-Action Loop with Memory for Long-Horizon Planning [1.5469452301122177]
PALMERと呼ばれる汎用計画アルゴリズムを導入する。
Palmerは古典的なサンプリングベースの計画アルゴリズムと学習に基づく知覚表現を組み合わせる。
これにより、表現学習、記憶、強化学習、サンプリングベースの計画の間に、緊密なフィードバックループが生成される。
論文 参考訳(メタデータ) (2022-12-08T22:11:49Z) - Classical Planning in Deep Latent Space [33.06766829037679]
Latplanは、ディープラーニングと古典的計画を組み合わせた教師なしアーキテクチャである。
ラトプランは、象徴的な潜在空間における目標状態への計画を見つけ、視覚化された計画実行を返します。
論文 参考訳(メタデータ) (2021-06-30T21:31:21Z) - Enabling Visual Action Planning for Object Manipulation through Latent
Space Roadmap [72.01609575400498]
高次元状態空間を有する複雑な操作タスクの視覚的行動計画のための枠組みを提案する。
低次元潜時空間におけるシステムダイナミクスを世界規模で捉えたグラフベースの構造であるタスク計画のためのLatent Space Roadmap(LSR)を提案する。
実ロボットで実行された2つの模擬ボックス積み重ねタスクと折り畳みタスクについて,本フレームワークの徹底的な検討を行う。
論文 参考訳(メタデータ) (2021-03-03T17:48:26Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
未来に予測し、計画する能力は、世界で行動するエージェントにとって基本である。
視覚的予測と計画のための現在の学習手法は、長期的タスクでは失敗する。
本稿では,これらの制約を克服可能な視覚的予測と計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:58:56Z) - Latent Space Roadmap for Visual Action Planning of Deformable and Rigid
Object Manipulation [74.88956115580388]
プランニングは、イメージを埋め込んだ低次元の潜在状態空間で行われる。
我々のフレームワークは2つの主要なコンポーネントで構成されており、画像のシーケンスとして視覚的な計画を生成するビジュアル・フォレスト・モジュール(VFM)と、それら間のアクションを予測するアクション・プロポーザル・ネットワーク(APN)である。
論文 参考訳(メタデータ) (2020-03-19T18:43:26Z) - Hallucinative Topological Memory for Zero-Shot Visual Planning [86.20780756832502]
視覚計画(VP)では、エージェントは、オフラインで取得した動的システムの観察から目標指向の振る舞いを計画することを学ぶ。
以前のVPに関するほとんどの研究は、学習された潜在空間で計画することでこの問題にアプローチし、結果として品質の低い視覚計画を生み出した。
本稿では,画像空間を直接計画し,競合性能を示すシンプルなVP手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T18:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。