論文の概要: Classical Planning in Deep Latent Space
- arxiv url: http://arxiv.org/abs/2107.00110v1
- Date: Wed, 30 Jun 2021 21:31:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:59:38.206430
- Title: Classical Planning in Deep Latent Space
- Title(参考訳): 深層潜在空間における古典計画
- Authors: Masataro Asai, Hiroshi Kajino, Alex Fukunaga, Christian Muise
- Abstract要約: Latplanは、ディープラーニングと古典的計画を組み合わせた教師なしアーキテクチャである。
ラトプランは、象徴的な潜在空間における目標状態への計画を見つけ、視覚化された計画実行を返します。
- 参考スコア(独自算出の注目度): 33.06766829037679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current domain-independent, classical planners require symbolic models of the
problem domain and instance as input, resulting in a knowledge acquisition
bottleneck. Meanwhile, although deep learning has achieved significant success
in many fields, the knowledge is encoded in a subsymbolic representation which
is incompatible with symbolic systems such as planners. We propose Latplan, an
unsupervised architecture combining deep learning and classical planning. Given
only an unlabeled set of image pairs showing a subset of transitions allowed in
the environment (training inputs), Latplan learns a complete propositional PDDL
action model of the environment. Later, when a pair of images representing the
initial and the goal states (planning inputs) is given, Latplan finds a plan to
the goal state in a symbolic latent space and returns a visualized plan
execution. We evaluate Latplan using image-based versions of 6 planning
domains: 8-puzzle, 15-Puzzle, Blocksworld, Sokoban and Two variations of
LightsOut.
- Abstract(参考訳): 現在のドメインに依存しない、古典的なプランナーは問題領域とインスタンスのシンボリックモデルを必要とするため、知識獲得のボトルネックとなる。
一方、深層学習は多くの分野で大きな成功を収めてきたが、その知識は、プランナーのような記号体系と相容れない記号表現に符号化されている。
ディープラーニングと古典計画を組み合わせた教師なしアーキテクチャであるLatplanを提案する。
環境(入力を訓練する)で許容される遷移のサブセットを示すラベルのないイメージペアのセットのみを与えられたlatplanは、環境の完全な命題pddlアクションモデルを学ぶ。
その後、初期状態と目標状態(計画入力)を表す一対の画像が与えられると、latplanはシンボル的潜在空間における目標状態への計画を見つけ、視覚化された計画実行を返す。
8-puzzle, 15-puzzle, blockworld, sokoban, and two variations of lightsoutの6つのプランニングドメインのイメージベースバージョンを用いてlatplanを評価した。
関連論文リスト
- PDDLEGO: Iterative Planning in Textual Environments [56.12148805913657]
テキスト環境における計画は、現在のモデルにおいても長年にわたる課題であることが示されている。
我々は,あるサブゴールの部分的な計画に導く計画表現を反復的に構築するPDDLEGOを提案する。
数ショットのPDDLEGOで作成するプランは,Coin Collectorシミュレーションでエンドツーエンドのプランを生成するよりも43%効率がよいことを示す。
論文 参考訳(メタデータ) (2024-05-30T08:01:20Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
本稿では,言語,視覚,行動データを個別に訓練し,長期的課題を解決するための基礎モデルを提案する。
我々は,大規模なビデオ拡散モデルを用いて,環境に根ざした記号的計画を構築するために,大規模言語モデルを用いている。
生成したビデオプランは、生成したビデオからアクションを推論する逆ダイナミクスモデルを通じて、視覚運動制御に基礎を置いている。
論文 参考訳(メタデータ) (2023-09-15T17:44:05Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
現実の計画問題は、数百から数千ものオブジェクトを巻き込むことが多い。
単一推論パスにおけるオブジェクトの重要性を予測するためのグラフニューラルネットワークアーキテクチャを提案する。
提案手法では,プランナと遷移モデルをブラックボックスとして扱い,既製のプランナで使用することができる。
論文 参考訳(メタデータ) (2020-09-11T18:55:08Z) - Plan2Vec: Unsupervised Representation Learning by Latent Plans [106.37274654231659]
Plan2vecは、強化学習にインスパイアされた教師なしの表現学習手法である。
Plan2vecは、近距離を用いて画像データセット上に重み付きグラフを構築し、その局所距離を、計画された経路上の経路積分を蒸留することによって、大域的な埋め込みに外挿する。
1つのシミュレーションと2つの実世界の画像データセットに対する Plan2vec の有効性を実証する。
論文 参考訳(メタデータ) (2020-05-07T17:52:23Z) - Hallucinative Topological Memory for Zero-Shot Visual Planning [86.20780756832502]
視覚計画(VP)では、エージェントは、オフラインで取得した動的システムの観察から目標指向の振る舞いを計画することを学ぶ。
以前のVPに関するほとんどの研究は、学習された潜在空間で計画することでこの問題にアプローチし、結果として品質の低い視覚計画を生み出した。
本稿では,画像空間を直接計画し,競合性能を示すシンプルなVP手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T18:54:42Z) - STRIPS Action Discovery [67.73368413278631]
近年のアプローチでは、すべての中間状態が欠如している場合でも、アクションモデルを合成する古典的な計画が成功している。
アクションシグネチャが不明な場合に,従来のプランナーを用いてSTRIPSアクションモデルを教師なしで合成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T17:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。