論文の概要: Inference, Prediction, and Entropy-Rate Estimation of Continuous-time,
Discrete-event Processes
- arxiv url: http://arxiv.org/abs/2005.03750v1
- Date: Thu, 7 May 2020 20:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 23:15:54.222867
- Title: Inference, Prediction, and Entropy-Rate Estimation of Continuous-time,
Discrete-event Processes
- Title(参考訳): 連続時間離散イベント過程の推測・予測・エントロピー・レート推定
- Authors: S. E. Marzen and J. P. Crutchfield
- Abstract要約: モデルの推定、未来予測、離散時間離散イベントプロセスのエントロピー率の推定は、十分に成り立っている。
ここでは、それらを推測、予測、推定するための新しい方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring models, predicting the future, and estimating the entropy rate of
discrete-time, discrete-event processes is well-worn ground. However, a much
broader class of discrete-event processes operates in continuous-time. Here, we
provide new methods for inferring, predicting, and estimating them. The methods
rely on an extension of Bayesian structural inference that takes advantage of
neural network's universal approximation power. Based on experiments with
complex synthetic data, the methods are competitive with the state-of-the-art
for prediction and entropy-rate estimation.
- Abstract(参考訳): モデルの推定、未来予測、離散時間離散イベントプロセスのエントロピー率の推定は、十分に成り立っている。
しかし、より広い種類の離散イベントプロセスは連続時間で動作します。
ここでは,推測,予測,推定を行う新しい手法を提案する。
これらの手法は、ニューラルネットワークの普遍近似力を利用するベイズ構造推論の拡張に依存している。
複雑な合成データを用いた実験に基づいて、予測とエントロピーレート推定のための最先端技術と競合する。
関連論文リスト
- In-Context Parametric Inference: Point or Distribution Estimators? [66.22308335324239]
償却点推定器は一般に後部推論より優れているが、後者は低次元問題では競争力がある。
実験の結果, 償却点推定器は一般に後部推定より優れているが, 後者は低次元問題では競争力があることがわかった。
論文 参考訳(メタデータ) (2025-02-17T10:00:24Z) - Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Inferring biological processes with intrinsic noise from cross-sectional data [0.8192907805418583]
データから動的モデルを推定することは、計算生物学における重要な課題である。
確率フロー推論(PFI)は,ODE推論のアルゴリズム的容易性を維持しつつ,本質性から力を引き離すことを示す。
実例では,PFIは高次元反応ネットワークにおける正確なパラメータと力の推定を可能にし,分子ノイズによる細胞分化動態の推測を可能にする。
論文 参考訳(メタデータ) (2024-10-10T00:33:25Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Entropic Matching for Expectation Propagation of Markov Jump Processes [38.60042579423602]
本稿では,エントロピックマッチングフレームワークに基づく新たなトラクタブル推論手法を提案する。
簡単な近似分布の族に対して閉形式の結果を提供することにより,本手法の有効性を実証する。
我々は、近似予測法を用いて、基礎となるパラメータの点推定のための式を導出する。
論文 参考訳(メタデータ) (2023-09-27T12:07:21Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
償却ベイズ推論は、当初シミュレーションデータ上の推論ネットワークのトレーニングに計算コストを投資することを目的としている。
観測対象のほとんど認識不能な摂動は、予測された後部および非現実的な後部予測標本に劇的な変化をもたらす可能性があることを示す。
本研究では,条件密度推定器のフィッシャー情報をペナライズした計算効率の高い正規化手法を提案する。
論文 参考訳(メタデータ) (2023-05-24T10:18:45Z) - Event Temporal Relation Extraction with Bayesian Translational Model [32.78633780463432]
本稿では,時間的関係表現を潜在変数としてモデル化する学習ベース手法であるBayesian-Transを紹介する。
従来のニューラルアプローチと比較して,提案手法はパラメータの後方分布を直接推定する。
論文 参考訳(メタデータ) (2023-02-10T00:11:19Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
この作業は、共同設立者との因果推論を拡張します。
本稿では,ランダムな入力空間を持つ表現子定理に基づく因果推論のための変分推定手法を提案する。
論文 参考訳(メタデータ) (2020-04-24T00:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。