論文の概要: Relational Conformal Prediction for Correlated Time Series
- arxiv url: http://arxiv.org/abs/2502.09443v1
- Date: Thu, 13 Feb 2025 16:12:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:49:44.066703
- Title: Relational Conformal Prediction for Correlated Time Series
- Title(参考訳): リレーショナル・コンフォーマルな時系列予測
- Authors: Andrea Cini, Alexander Jenkins, Danilo Mandic, Cesare Alippi, Filippo Maria Bianchi,
- Abstract要約: 共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
- 参考スコア(独自算出の注目度): 56.59852921638328
- License:
- Abstract: We address the problem of uncertainty quantification in time series forecasting by exploiting observations at correlated sequences. Relational deep learning methods leveraging graph representations are among the most effective tools for obtaining point estimates from spatiotemporal data and correlated time series. However, the problem of exploiting relational structures to estimate the uncertainty of such predictions has been largely overlooked in the same context. To this end, we propose a novel distribution-free approach based on the conformal prediction framework and quantile regression. Despite the recent applications of conformal prediction to sequential data, existing methods operate independently on each target time series and do not account for relationships among them when constructing the prediction interval. We fill this void by introducing a novel conformal prediction method based on graph deep learning operators. Our method, named Conformal Relational Prediction (CoRel), does not require the relational structure (graph) to be known as a prior and can be applied on top of any pre-trained time series predictor. Additionally, CoRel includes an adaptive component to handle non-exchangeable data and changes in the input time series. Our approach provides accurate coverage and archives state-of-the-art uncertainty quantification in relevant benchmarks.
- Abstract(参考訳): 本稿では,時系列予測における不確実性定量化の問題に,相関シーケンスでの観測を利用して対処する。
グラフ表現を利用した関係深層学習手法は時空間データと相関時系列から点推定値を得るための最も効果的なツールである。
しかし、そのような予測の不確かさを推定するために関係構造を利用するという問題は、ほぼ同じ文脈で見過ごされてきた。
そこで本研究では、共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
逐次データへの共形予測の最近の適用にもかかわらず、既存の手法は各対象時系列に対して独立して動作し、予測間隔を構築する際にそれらの関係を考慮しない。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
コンフォーマルリレーショナル予測 (CoRel) と呼ばれる手法では, 事前学習した時系列予測器上で適用可能な関係構造 (グラフ) は必要としない。
さらにCoRelは、非交換可能なデータや入力時系列の変更を処理するための適応的なコンポーネントを含んでいる。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
関連論文リスト
- Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Conformal prediction set for time-series [16.38369532102931]
不確かさの定量化は複雑な機械学習手法の研究に不可欠である。
我々は,時系列の予測セットを構築するために,ERAPS(Ensemble Regularized Adaptive Prediction Set)を開発した。
ERAPSによる有意な限界被覆と条件被覆を示し、競合する手法よりも予測セットが小さい傾向にある。
論文 参考訳(メタデータ) (2022-06-15T23:48:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Applying Regression Conformal Prediction with Nearest Neighbors to time
series data [0.0]
本稿では,時系列データにおける共形予測器を用いて,信頼可能な予測区間を構築する方法を提案する。
提案手法は,FPTO-WNN手法の高速パラメータチューニング手法を基礎アルゴリズムとして用いた。
論文 参考訳(メタデータ) (2021-10-25T15:11:32Z) - Conformal prediction for time series [16.38369532102931]
textttEnbPIは、共形予測(CP)と密接に関連しているが、データ交換性を必要としないアンサンブル予測をラップする。
提案手法の有効性を実証するため,広範囲なシミュレーションと実データ解析を行った。
論文 参考訳(メタデータ) (2020-10-18T21:05:32Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。