論文の概要: RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control
of the COVID-19 Pandemic
- arxiv url: http://arxiv.org/abs/2005.03950v3
- Date: Wed, 15 Dec 2021 06:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 12:41:44.042406
- Title: RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control
of the COVID-19 Pandemic
- Title(参考訳): RetinaFaceMask:COVID-19パンデミックの制御を支援する1段階顔マスク検出器
- Authors: Xinqi Fan, Mingjie Jiang
- Abstract要約: 感染防止策の1つは、公共の場でマスクを着用することである。
特定の公共サービスプロバイダは、マスクを適切に着用する場合のみ、クライアントにサービスを使用するように要求する。
しかし、マスクの自動検出に関する研究はごくわずかである。
我々は,初の高性能単段マスク検出器であるRetinaFaceMaskを提案した。
- 参考スコア(独自算出の注目度): 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus 2019 has made a significant impact on the world. One effective
strategy to prevent infection for people is to wear masks in public places.
Certain public service providers require clients to use their services only if
they properly wear masks. There are, however, only a few research studies on
automatic face mask detection. In this paper, we proposed RetinaFaceMask, the
first high-performance single stage face mask detector. First, to solve the
issue that existing studies did not distinguish between correct and incorrect
mask wearing states, we established a new dataset containing these annotations.
Second, we proposed a context attention module to focus on learning
discriminated features associated with face mask wearing states. Third, we
transferred the knowledge from the face detection task, inspired by how humans
improve their ability via learning from similar tasks. Ablation studies showed
the advantages of the proposed model. Experimental findings on both the public
and new datasets demonstrated the state-of-the-art performance of our model.
- Abstract(参考訳): コロナウイルス2019は世界に大きな影響を与えた。
感染防止策の1つは、公共の場でマスクを着用することである。
特定の公共サービスプロバイダは、マスクを適切に着用する場合のみ、クライアントにサービスを使用するように要求する。
しかし、顔マスクの自動検出に関する研究はごくわずかである。
本稿では,初の高性能単一ステージマスク検出器であるRetinaFaceMaskを提案する。
まず,既存の研究がマスク着用状態と誤着用状態とを区別しないという課題を解決するため,これらのアノテーションを含む新しいデータセットを構築した。
第2に,顔マスク装着状態に関連する識別特徴の学習に焦点をあてたコンテキストアテンションモジュールを提案する。
第3に、同様のタスクから学習することで、人間の能力向上にヒントを得て、顔検出タスクから知識を移した。
アブレーション研究は提案モデルの利点を示した。
公開および新データセットの実験結果から,本モデルの最先端性能が示された。
関連論文リスト
- Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
現在の一般的な顔認識システムは、隠蔽シーンに遭遇する際の重大な性能劣化に悩まされている。
本稿では,これら2つのタスクを協調的に扱うために,マルチタスクのgEnerative mask dEcoupling Face Recognition (MEER) ネットワークを提案する。
まず,マスクと識別情報を分離する新しいマスクデカップリングモジュールを提案する。
論文 参考訳(メタデータ) (2023-11-20T03:23:03Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
顔のプライバシと認識性能を同時に考慮する新しいフレームワークFaceMAEを提案する。
ランダムにマスクされた顔画像は、FaceMAEの再構築モジュールのトレーニングに使用される。
また、いくつかの公開顔データセット上で十分なプライバシー保護顔認証を行う。
論文 参考訳(メタデータ) (2022-05-23T07:19:42Z) - Development of a face mask detection pipeline for mask-wearing
monitoring in the era of the COVID-19 pandemic: A modular approach [0.0]
SARS-Cov-2パンデミックの間、マスク着用はウイルスの拡散や収縮を防ぐための効果的な手段となった。
人口のマスク着用率を監視する能力は、ウイルスに対する公衆衛生戦略を決定するのに役立つだろう。
1)顔検出とアライメント,2)顔マスク分類の2つのモジュールからなる2段階の顔マスク検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-30T12:32:33Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
マスクは従来の顔認識システムの性能に影響を与える。
マスク不変顔認識ソリューション(MaskInv)を提案する。
蒸留された知識に加えて、学生ネットワークは、マージンベースのアイデンティティ分類損失による追加ガイダンスの恩恵を受ける。
論文 参考訳(メタデータ) (2021-12-10T16:19:28Z) - Adversarial Mask: Real-World Adversarial Attack Against Face Recognition
Models [66.07662074148142]
本稿では,最先端の深層学習に基づく顔認識モデルに対する物理対角的普遍摂動(UAP)を提案する。
実験では,幅広い深層学習モデルとデータセットへの対向マスクの転送可能性について検討した。
ファブリック・メディカル・フェイスマスクに対向パターンを印刷することにより,実世界の実験において,我々の対向マスクの有効性を検証した。
論文 参考訳(メタデータ) (2021-11-21T08:13:21Z) - Mask or Non-Mask? Robust Face Mask Detector via Triplet-Consistency
Representation Learning [23.062034116854875]
新型コロナウイルスの感染拡大を遅らせる効果的な方法の1つは、ワクチンや薬品がない場合、マスクを着用することである。
公共の場でのマスクや覆いの使用を義務付けるには、面倒で注意が集中的な人的資源の追加が必要である。
本稿では,フィードフォワード畳み込みニューラルネットワークの効果的な注目を実現するために,コンテキストアテンションモジュールを用いたフェイスマスク検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-01T16:44:06Z) - CoverTheFace: face covering monitoring and demonstrating using deep
learning and statistical shape analysis [6.0645077747881855]
マスクを着用することは、新型コロナウイルスのパンデミックに対する強力な保護だ。
この観察により,マスクを着用している人の状態を自動で監視する手法が考案された。
これまでの研究とは違って、マスク検出だけでなく、適切なマスク着用に関するパーソナライズされたデモンストレーションの作成にも重点を置いています。
論文 参考訳(メタデータ) (2021-08-23T22:11:07Z) - Masked Face Recognition Challenge: The InsightFace Track Report [79.77020394722788]
新型コロナウイルス(COVID-19)が流行する中、ほとんどの人が顔認証に挑戦するマスクを着用している。
本ワークショップでは,顔マスクの存在下でのベンチマークによる深層顔認識手法に着目した。
論文 参考訳(メタデータ) (2021-08-18T15:14:44Z) - Indian Masked Faces in the Wild Dataset [86.79402670904338]
本研究では,ポーズ,照明,解像度,被検者の着用するマスクの多様さを特徴とする,IMFWデータセットを新たに提案する。
また,提案したIMFWデータセットにおいて,既存の顔認識モデルの性能をベンチマークした。
論文 参考訳(メタデータ) (2021-06-17T17:23:54Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z) - Deep Learning Framework to Detect Face Masks from Video Footage [0.0]
深層学習を用いて映像中の顔のマスクを検出する手法を提案する。
提案フレームワークは,MTCNN顔検出モデルを利用して,映像フレームに存在する顔とそれに対応する顔のランドマークを識別する。
提案手法は,高い精度,リコール,精度を達成し,顔のマスク検出に有効であることを示した。
論文 参考訳(メタデータ) (2020-11-04T16:02:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。