論文の概要: Hybrid Machine Learning Models for Crop Yield Prediction
- arxiv url: http://arxiv.org/abs/2005.04155v1
- Date: Sun, 8 Mar 2020 12:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 13:59:06.818577
- Title: Hybrid Machine Learning Models for Crop Yield Prediction
- Title(参考訳): 作物収量予測のためのハイブリッド機械学習モデル
- Authors: Saeed Nosratabadi, Felde Imre, Karoly Szell, Sina Ardabili, Bertalan
Beszedes, Amir Mosavi
- Abstract要約: 本研究では,ハイブリッド機械学習に基づく新たな収量予測モデルを提案する。
結果は、食品安全保障の実践者、研究者、あるいは政策立案者によって利用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prediction of crop yield is essential for food security policymaking,
planning, and trade. The objective of the current study is to propose novel
crop yield prediction models based on hybrid machine learning methods. In this
study, the performance of the artificial neural networks-imperialist
competitive algorithm (ANN-ICA) and artificial neural networks-gray wolf
optimizer (ANN-GWO) models for the crop yield prediction are evaluated.
According to the results, ANN-GWO, with R of 0.48, RMSE of 3.19, and MEA of
26.65, proved a better performance in the crop yield prediction compared to the
ANN-ICA model. The results can be used by either practitioners, researchers or
policymakers for food security.
- Abstract(参考訳): 食料安全保障政策、計画、貿易には収穫量の予測が不可欠である。
本研究の目的は,ハイブリッド機械学習に基づく新しい作物収量予測モデルを提案することである。
本研究では, 作物収量予測のためのニューラルネットワーク-帝国主義的競争アルゴリズム (ann-ica) とニューラルネットワーク-gray wolf optimizer (ann-gwo) モデルの性能評価を行った。
結果によると、ANN-GWOのRは0.48、RMSEは3.19、MEAは26.65であり、ANN-ICAモデルと比較して収穫量予測の精度が向上した。
結果は、食品安全保障の実践者、研究者、あるいは政策立案者によって利用できる。
関連論文リスト
- Neural Network Prediction of Strong Lensing Systems with Domain Adaptation and Uncertainty Quantification [44.99833362998488]
MVE(Mean-variance Estimator)は、ニューラルネットワークの予測からアレタリック(データ)の不確実性を得るための一般的なアプローチである。
本研究では、強いレンズデータに対する非教師なし領域適応(UDA)と組み合わせて、MVEの有効性を初めて研究する。
MVE に UDA を追加すると,UDA なしで MVE モデルより約 2 倍精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-23T19:56:57Z) - LSTM Autoencoder-based Deep Neural Networks for Barley Genotype-to-Phenotype Prediction [16.99449054451577]
そこで本研究では,オオムギの開花時期と収量推定のために,オオムギの遺伝子型からフェノタイプへの予測のためのLSTMオートエンコーダを用いた新しいモデルを提案する。
我々のモデルは、複雑な高次元農業データセットを扱う可能性を示す他のベースライン手法よりも優れていた。
論文 参考訳(メタデータ) (2024-07-21T16:07:43Z) - Naïve Bayes and Random Forest for Crop Yield Prediction [0.0]
本研究は、1997年から2020年までのインドにおける作物収量予測を、様々な作物や重要な環境要因に着目して分析した。
これは、線形回帰、決定木、KNN、ナイーブベイズ、K平均クラスタリング、ランダムフォレストといった先進的な機械学習技術を活用することで、農業の収量を予測することを目的としている。
論文 参考訳(メタデータ) (2024-04-23T16:55:45Z) - Integrating processed-based models and machine learning for crop yield
prediction [1.3107669223114085]
本研究では,ハイブリッドメタモデリング手法を用いてジャガイモ収量予測を行う。
作物成長モデルを用いて、畳み込みニューラルネットを(前)訓練するための合成データを生成する。
シリコンに適用すると、我々のメタモデリング手法は、純粋にデータ駆動のアプローチからなるベースラインよりも優れた予測が得られる。
論文 参考訳(メタデータ) (2023-07-25T12:51:25Z) - MetaRF: Differentiable Random Forest for Reaction Yield Prediction with
a Few Trails [58.47364143304643]
本稿では,反応収率予測問題に焦点をあてる。
筆者らはまず,数発の収量予測のために特別に設計された,注意に基づく識別可能なランダム森林モデルであるMetaRFを紹介した。
数発の学習性能を改善するために,さらに次元還元に基づくサンプリング手法を導入する。
論文 参考訳(メタデータ) (2022-08-22T06:40:13Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
本稿では,ユーザの嗜好モデルを強化することで,カスケードサイズ予測を促進する新しいフレームワークを提案する。
エンド・ツー・エンドの手法により,ユーザの情報拡散プロセスがより適応的で正確になる。
論文 参考訳(メタデータ) (2022-04-18T09:25:06Z) - Machine Learning for Stock Prediction Based on Fundamental Analysis [13.920569652186714]
フィードフォワードニューラルネットワーク(FNN)、ランダムフォレスト(RF)、適応型ニューラルファジィ推論システム(ANFIS)の3つの機械学習アルゴリズムについて検討する。
RFモデルは最高の予測結果を達成し,FNNとANFISのテスト性能を向上させることができる。
この結果から, 機械学習モデルは, 株式投資に関する意思決定において, 基礎アナリストの助けとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-01-26T18:48:51Z) - Energy-Based Generative Cooperative Saliency Prediction [44.85865238229076]
生成モデルの観点から,サリエンシ予測問題について検討する。
本稿では,生産協調ネットワークに基づく生産協調給付予測フレームワークを提案する。
実験結果から,我々の生成モデルは最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T02:11:50Z) - CYPUR-NN: Crop Yield Prediction Using Regression and Neural Networks [0.0]
回帰とニューラルネットワークを用いた作物収量予測(CYPUR-NN)は、農業者や農家が画像からの利得を予測したり、ウェブインターフェースを介して値を入力することを容易にするシステムとして開発されている。
論文 参考訳(メタデータ) (2020-11-26T12:50:58Z) - Developing RNN-T Models Surpassing High-Performance Hybrid Models with
Customization Capability [46.73349163361723]
リカレントニューラルネットワークトランスデューサ(Recurrent Neural Network Transducer, RNN-T)は、音声認識のための一般的なハイブリッドモデルを置き換える、有望なエンドツーエンド(E2E)モデルである。
トレーニング中のGPUメモリ消費を低減したRNN-Tモデルの最近の開発について述べる。
本稿では,RNN-Tモデルを新しいドメインにカスタマイズする方法について検討する。
論文 参考訳(メタデータ) (2020-07-30T02:35:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。